January 23 MATH 1112 sec. 54 Spring 2019

Section 2.1: More on Functions

In this section we look at two concepts:

- What does it mean for a function to be increasing, decreasing or constant on an interval? How would this affect the graph of the function.
- What are piece-wise defined functions? How are they evaluated, and how are they graphed?

January 18, 2019

1/14

Graphing Functions: Increasing, Decreasing Some definitions:

Suppose that the function f is defined on an open interval I.

- f is increasing on I if for each a, b in I, if a < b, then f(a) < f(b).
- f is decreasing on I if for each a, b in I, if a < b, then f(a) > f(b).

イロト 不得 トイヨト イヨト ヨー ろくの January 18, 2019

2/14

• f is constant on I if f(a) = f(b) for each a, b in I.

Note that going from left to right, the graph of f

- goes upward if f is increasing
- goes downward if f is decreasing
- is horizontal if f is constant.

Example

Identify the intervals (if any) on which *f* is increasing.

111

Example

Example Identify the intervals (if any) on which *f* is decreasin and any intervals on which f is constant.

f is decreasing on (3,7)

(2,3).

4/14 January 18, 2019

Question

Suppose the function g(x) is **decreasing** on the interval (0,7). Which of the following is true?

January 18, 2019

5/14

(d) All of the above are true.

(e) None of the above are true.

Relative Extrema

Some definitions:

Suppose f is a function and c is in the interior of the domain of f. Then

- f(c) is a relative maximum is there exists an open interval I containing c such that f(x) < f(c) for all x in I different from c,
- f(c) is a relative minimum is there exists an open interval I containing c such that f(x) > f(c) for all x in I different from c.

An **extremum** is a maximum or a minimum. The plurals of these three terms are extrema, maxima, and minima. The word relative can be replaced with the word local.

> January 18, 2019

6/14

Relative Extrema

Relative extrema are the *y*-values for local highest or lowest points on a graph.

Figure: f has relative maxima f(a) and f(c) and relative minima f(b) and f(d)

Evaluating and Graphing Piecewise Defined Functions

We wish to consider functions that are defined by different rules over different parts of the domain. These are called piecewise defined functions. An example is

$$f(x) = \begin{cases} x^2 - 1, & x < 0\\ 2, & 0 \le x < 1\\ \frac{1}{x}, & x \ge 1 \end{cases}$$

January 18, 2019

8/14

Example Evaluating Piecewise Defined Functions

Let
$$f(x) = \begin{cases} x^2 - 1, & x < 0 \\ 2, & 0 \le x < 1 \\ \frac{1}{x}, & x \ge 1 \end{cases}$$

Evaluate (a) $f(4) = \frac{1}{4}$

(b)
$$f(-\pi) = (-\pi)^2 - | = \pi^2 - |$$

(c) f(0) = 2

(d) $f(\frac{1}{3}) = 2$

47,1 rule 3 -π<0 0≤0<1 0≤ ¹/₂<1

イロト 不得 トイヨト イヨト 二日

Question Evaluate g(2) where

$$g(x) = \left\{egin{array}{ccc} rac{x+1}{x-2}, & x \leq -3 \ x^3-2x, & -3 < x < 1 \ rac{x}{2}-3, & x \geq 1 \end{array}
ight.$$

(a) g(2) is undefined because of division by zero

(b)
$$g(2) = 4$$

(c) $g(2) = -2$ $2 \ge 1$ $g(2) = \frac{2}{2} - 3 = 1 - 3 = -2$

(d) g(2) is undefined because 2 is not in the domain

Plotting Piecewise Defined Functions

If we know how to plot the different pieces of a piecewise defined function, then we can sketch its plot. As an example, let's plot

$$f(x) = \begin{cases} x^2 - 1, & x < 0\\ 2, & 0 \le x < 1\\ \frac{1}{x}, & x \ge 1 \end{cases}$$

Plotting Example

January 18, 2019 12 / 14

æ

イロト イロト イヨト イヨト

January 18, 2019 13/14

Piecewise Defined Functions

Let
$$f(x) = \begin{cases} \frac{x}{x-2}, & x < 2\\ 1, & x = 2, \\ x^2, & x > 2 \end{cases}$$
. Suppose that $h > 0$, and evaluate

(b) $f(2+h) = (2+h)^2 = 4+4h+h^2$. at h>2 since h>0

(c)
$$f(2-h) = \frac{2-h}{2-h-2} = \frac{2-h}{-h} = -\frac{2-h}{h} = -\frac{2-h}{h}$$

Since $h \ge 0$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □