Jan. 23 Math 2254H sec 015H Spring 2015

Section 7.2: Trigonometric Integrals

Compare the two integrals
$\int \cos ^{3} x d x$
and
Let $u=\sin x, d u=\cos x d x$
$\int\left(1-\sin ^{2} x\right) \cos x d x=\int\left(1-u^{2}\right) d u=u-\frac{u^{3}}{3}+C$

$$
=\sin x-\frac{\sin ^{3} x}{3}+C
$$

Evaluate $\int \sin ^{2} x \cos ^{3} x d x=\int \sin ^{2} x\left(1-\sin ^{2} x\right) \cos x d x$

$$
\begin{aligned}
u & =\sin x, d u=\cos x d x \\
\int u^{2}\left(1-u^{2}\right) d u & =\int\left(u^{2}-u^{4}\right) d u \\
& =\frac{u^{3}}{3}-\frac{u^{5}}{5}+C \\
& =\frac{\sin ^{3} x}{3}-\frac{\sin ^{5} x}{5}+C
\end{aligned}
$$

$\int \sin ^{m} x \cos ^{n} x d x$

(a) If n is odd ($n=2 k+1$), then save one cosine for $d u$, write the remaining cosines as

$$
\cos ^{2 k} x=\left(1-\sin ^{2} x\right)^{k},
$$

and choose the substitution $u=\sin x$.

$$
\begin{gathered}
\int \sin ^{m} x \cos ^{n} x d x=\int \sin ^{m} x\left(1-\sin ^{2} x\right)^{k} \cos x d x \\
=\int u^{m}\left(1-u^{2}\right)^{k} d u
\end{gathered}
$$

$\int \sin ^{m} x \cos ^{n} x d x$

(b) If m is odd $(m=2 p+1)$, then save one sine for $d u$, write the remaining sines as

$$
\sin ^{2 p} x=\left(1-\cos ^{2} x\right)^{p}
$$

and choose the substitution $u=\cos x$.

$$
\begin{gathered}
\int \sin ^{m} x \cos ^{n} x d x=\int \sin x\left(1-\cos ^{2} x\right)^{p} \cos ^{n} x d x \\
=-\int u^{n}\left(1-u^{2}\right)^{p} d u
\end{gathered}
$$

Evaluate

$$
\int \sin ^{5} x d x=-\cos x+\frac{2}{3} \cos ^{3} x-\frac{\cos ^{5} x}{6}+C
$$

Evaluate

$$
\begin{aligned}
\int \sin ^{3} x \cos ^{3} x d x & =\frac{\sin ^{4} x}{4}-\frac{\sin ^{6} x}{6}+C \\
& =\frac{\cos ^{6} x}{6}-\frac{\cos ^{4} x}{4}+k
\end{aligned}
$$

What if both m and n are even?

Recall the half-angle identities

$$
\sin ^{2} x=\frac{1}{2}(1-\cos 2 x) \quad \text { and } \quad \cos ^{2} x=\frac{1}{2}(1+\cos 2 x)
$$

$\int \sin ^{m} x \cos ^{n} x d x$
(c) If both m and n are even, use the half-angle identities above. The identity

$$
\sin x \cos x=\frac{1}{2} \sin 2 x
$$

may also be useful.

Evaluate

$$
\int \cos ^{4} \theta d \theta
$$

$$
\begin{aligned}
\cos ^{4} \theta & =\left(\cos ^{2} \theta\right)^{2} \\
& =\left(\frac{1}{2}(1+\cos 2 \theta)\right)^{2} \\
& =\frac{1}{4}\left(1+2 \cos 2 \theta+\cos ^{2} 2 \theta\right) \\
& =\frac{1}{4}\left(1+2 \cos 2 \theta+\frac{1}{2}+\frac{1}{2} \cos 4 \theta\right) \\
& =\frac{1}{4}\left(\frac{3}{2}+2 \cos 2 \theta+\frac{1}{2} \cos 4 \theta\right)
\end{aligned}
$$

$$
\int \cos ^{4} \theta d \theta=\frac{1}{4} \int\left(\frac{3}{2}+2 \cos 2 \theta+\frac{1}{2} \cos 4 \theta\right) d \theta
$$

$$
=\frac{1}{4}\left(\frac{3 \theta}{2}+\sin 2 \theta+\frac{1}{8} \sin 4 \theta\right)+C
$$

Other Uses of Trig Identities

Recall:

$$
\frac{d}{d x} \tan x=\sec ^{2} x \quad \text { and } \quad \frac{d}{d x} \sec x=\sec x \tan x
$$

$\tan ^{2} x+1=\sec ^{2} x$
$\int \tan x d x=\ln |\sec x|+C$
and
$\int \sec x d x=\ln |\sec x+\tan x|+C$

Evaluate

$$
\begin{aligned}
\int \sec ^{4} \theta \tan \theta d \theta & =\frac{\tan ^{4} \theta}{4}+\frac{\tan ^{2} \theta}{2}+C \\
& =\frac{\sec ^{4} \theta}{4}+k
\end{aligned}
$$

Evaluate

$$
\begin{aligned}
\int \tan ^{3} t d t & =\int\left(\sec ^{2} t-1\right) \tan t d t \\
& =\int \sec ^{2} t \tan t d t-\int \tan t d t \\
& =\int u d u-\ln |\sec t|+C \quad \begin{array}{l}
u
\end{array} \\
& =\frac{u^{2}}{2}-\ln t \\
\ln t u & =\sec ^{2} t d t \\
& =\frac{\tan ^{2} t}{2}-\ln |\sec t|+C
\end{aligned}
$$

