January 23 Math 2306 sec. 54 Spring 2019

Section 4: First Order Equations: Linear

We wish to solve a first order linear equation. Such an equation in
standard form looks like

dy

adx

We obtain a general solution in the form y = y. + y, using an
integrating factor.

+ P(x)y = f(x).
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General Solution of First Order Linear ODE

» Put the equation in standard form y’ + P(x)y = f(x), and correctly
identify the function P(x).

» Obtain the integrating factor (x) = exp (| P(x) dx).
» Multiply both sides of the equation (in standard form) by the

integrating factor 1. The left hand side will always collapse into
the derivative of a product

& 1)) = nx)10).

» Integrate both sides, and solve for y.

yx) = —— / H()F(x) dx = e I Px)ox ( / el P9 (x) ax + c)
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Solve the ODE
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Solve the IVP
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Verify

Just for giggles, lets verify that our solution y = 2x? + 3x really does
solve the differential equation we started with
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Steady and Transient States

For some linear equations, the term y. decays as x (or t) grows. For
example

dy = —X i _3 2 —X —X
a+y—3xe has solution y=3x"e + Ce .

Here, yp= gxze‘x and y, = Ce™*.

Such a decaying complementary solution is called a transient state.

The corresponding particular solution is called a steady state.
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Bernoulli Equations

Suppose P(x) and f(x) are continuous on some interval (a, b) and n is
a real number different from 0 or 1 (not necessarily an integer). An
equation of the form

dy

o TPy =1(y”

is called a Bernoulli equation.

Observation: This equation has the flavor of a linear ODE, but since
n # 0,1 it is necessarily nonlinear. So our previous approach involving
an integrating factor does not apply directly. Fortunately, we can use a
change of variables to obtain a related linear equation.
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