January 23 Math 2306 sec. 57 Spring 2018

Section 3: Separation of Variables

The simplest type of differential equation we could encounter would be of the form

$$
\frac{d y}{d x}=g(x) .
$$

No special techniques are needed; we just integrate

$$
\begin{aligned}
\int \underbrace{\frac{d y}{d x}}_{\underbrace{\prime}_{d}} d x=\int g(x) d x \Rightarrow \int d y & =\int g(x) d x \\
y & =G(x)+C
\end{aligned}
$$

where $\quad G^{\prime}(x)=g(x)$

Separable Equations

Definition: The first order equation $y^{\prime}=f(x, y)$ is said to be separable if the right side has the form

$$
f(x, y)=g(x) h(y)
$$

That is, a separable equation is one that has the form

$$
\frac{d y}{d x}=g(x) h(y)
$$

Determine which (if any) of the following are separable.
(a) $\frac{d y}{d x}=x^{3} y \quad$ is separable $\quad g(x)=x^{3}, h(y)=y$
(b) $\frac{d y}{d x}=2 x+y$ is not separable
(c) $\frac{d y}{d x}=\sin \left(x y^{2}\right)$ ls not separable
(d) $\frac{d y}{d t}-t e^{t-y}=0 \Rightarrow \frac{d y}{d t}=t e^{t-y}=t e^{t} \cdot e^{-y}$

This is separable w/ $g(t)=t e^{t}, h(y)=e^{-b}$

Solving Separable Equations
Let's assume that it's safe to divide by $h(y)$ and let's set $p(y)=1 / h(y)$. We solve (usually find an implicit solution) by separating the variables.

$$
\begin{aligned}
& \frac{d y}{d x}=g(x) h(y) \quad \stackrel{\text { divideby }}{ } \quad \Rightarrow \quad \frac{1}{h(y)} \frac{d y}{d x}=g(x) \\
& \Rightarrow p(y) \frac{d y}{d x}=g(x) \stackrel{\text { mut. by }}{\Rightarrow} d x \quad p(y) \frac{d y}{d x} d x=g(x) d x \\
& \text { Using } \frac{d y}{d x} d x=d y \quad p(y) d y=g(x) d x \quad \text { (variables separated) } \\
& \int \rho(y) d y=\int \delta(x) d x \Rightarrow P(y)=G(x)+C \quad P_{(y)}^{\prime}=P(y), G^{\prime}(x)=\delta(x)
\end{aligned}
$$

an implicit family of solutions.

Solve the ODE

$$
\begin{gathered}
\frac{d y}{d x}=-\frac{x}{y}=-x\left(\frac{1}{y}\right) \Rightarrow y \frac{d y}{d x}=-x \Rightarrow y \frac{d y}{d x} d x=-x d x \\
\int y d y=-\int x d x \Rightarrow \frac{1}{2} y^{2}=-\frac{1}{2} x^{2}+C
\end{gathered}
$$

Let $k=2 C$ we get $y^{2}=-x^{2}+k$
$x^{2}+y^{2}=k \quad$ a one parameter forby of Solutions

An IVP ${ }^{1}$

$$
t e^{t-y} d t-d y=0, \quad y(0)=1
$$

Let's separate vaniohles

$$
\begin{gathered}
d y=t e^{t-y} d t=t e^{t} e^{-y} d t \\
\frac{1}{e^{-y}} d y=t e^{t} d t \\
\int e^{y} d y=\int t e^{t} d t \\
e^{y}=t e^{t}-\int e^{t} d t
\end{gathered}
$$

Int by parts

$$
\begin{array}{ll}
u=t & d u=d t \\
v=e^{t} & d v=e^{t} d t
\end{array}
$$

$e^{b}=t e^{t}-e^{t}+C \quad$ Those are the solutions to the ODE.

Apply $y(0)=1$.

$$
e^{1}=0 \cdot e^{0}-e^{0}+C \Rightarrow e=-1+C \Rightarrow C=e+1
$$

The solution to the IV P is given by

$$
e^{y}=t e^{t}-e^{t}+e+1
$$

Caveat regarding division by $h(y)$.

Recalll that the IVP $\quad \frac{d y}{d x}=x \sqrt{y}, \quad y(0)=0$
has two solutions

$$
y(x)=\frac{x^{4}}{16} \quad \text { and } \quad y(x)=0 .
$$

If we separate the variables

$$
\frac{1}{\sqrt{y}} d y=x d x
$$

we lose the second solution.
Why? Dividing by \sqrt{y} assumes $y \neq 0$.

Caveat regarding division by $h(y)$.
We can look for solutions that may be lost using separation of variables. Suppose y_{0} is such that $h\left(y_{0}\right)=0$. Then $y=y_{0}$ is a constant solution of

$$
\frac{d y}{d x}=g(x) h(y) \quad \text { subject to } \quad y\left(x_{0}\right)=y_{0}
$$

To see that $y(x)=y$. Solver th IVP, note

$$
\begin{aligned}
& y\left(x_{0}\right)=y_{0} . \quad \text { And since } \quad h\left(y_{0}\right)=0, \\
& \frac{d y}{d x}=\frac{d}{d x} y_{0}=0=g(x) h\left(y_{0}\right)=g(x) \cdot 0=0
\end{aligned}
$$

Hence the constant function solver the ODE and the initial condition.

Section 4: First Order Equations: Linear

A first order linear equation has the form

$$
a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) .
$$

If $g(x)=0$ the equation is called homogeneous. Otherwise it is called nonhomogeneous.

Provided $a_{1}(x) \neq 0$ on the interval / of definition of a solution, we can write the standard form of the equation

$$
P(x)=\frac{a_{0}(x)}{a_{1}(x)}
$$

$$
\frac{d y}{d x}+P(x) y=f(x) . \quad f(x)=\frac{g(x)}{a_{1}(x)}
$$

We'll be interested in equations (and intervals I) for which P and f are continuous on I.

Solutions (the General Solution)

$$
\frac{d y}{d x}+P(x) y=f(x)
$$

It turns out the solution will always have a basic form of $y=y_{c}+y_{p}$ where

- y_{c} is called the complementary solution and would solve the problem

$$
\frac{d y}{d x}+P(x) y=0
$$

(called the associated homogeneous equation), and

- y_{p} is called the particular solution, and is heavily influenced by the function $f(x)$.

The cool thing is that our solution method will get both parts in one process-we won't get this benefit with higher order equations!

Motivating Example

$$
x^{2} \frac{d y}{d x}+2 x y=e^{x}
$$

1st ordn linear, not in standard form.

The left side looks like a product rule, the derivative of one product. Note $\frac{d}{d x}\left(x^{2} y\right)=x^{2} \frac{d y}{d x}+2 x y$ ow left side.

The ODE is $\frac{d}{d x}\left(x^{2} y\right)=e^{x}$
we can solve, ire. isolote y, by integrating

$$
\begin{gathered}
\int \frac{d}{d x}\left(x^{2} y\right) d x=\int e^{x} d x \\
x^{2} y=e^{x}+C
\end{gathered}
$$

Now isolate y with division

$$
y=\frac{e^{x}+c}{x^{2}}
$$

This can be written as $y=\frac{e^{x}}{x^{2}}+\frac{c}{x^{2}}$ This is NOT $y=\frac{e^{x}}{x^{2}}+C$

Derivation of Solution via Integrating Factor
Solve the equation in standard form

$$
\frac{d y}{d x}+P(x) y=f(x)
$$

weill multiply ow equation by a function $\mu(x)$ in Such a was that the resulting left side is a product rule. Let's assur $\mu(x)>0$.

$$
\mu(x) \frac{d y}{d x}+\mu(x) P(x) y=\mu(x) f(x)
$$

wart this to be the derivative ot a product. $\frac{d}{d x}(\mu y)$

Compane: $\quad \frac{d}{d x}(\mu y)=\mu \frac{d y}{d x}+\frac{d \mu}{d x} y$
Matching requires $\quad \frac{d \mu}{d x} y=\mu P(x) y$

Cen el the $y \quad \frac{d \mu}{d x}=\mu P(x)$ a sepable eqn in μ.

Sepanetr $\frac{1}{\mu} \frac{d \mu}{d x}=P(x)$

$$
\int \frac{1}{\mu} d \mu=\int P(x) d x
$$

$$
\ln \mu=\int P(x) d x \Rightarrow \mu=e^{\int P(x) d x}
$$

This is called on integrating factor.

The equation becomes

$$
\frac{d}{d x}[\mu(x) y]=\mu(x) f(x)
$$

well integrate both side to find y. (well finish this next time.)

