January 23 Math 2306 sec. 60 Spring 2019

Section 4: First Order Equations: Linear

We wish to solve a first order linear equation. Such an equation in standard form looks like

$$
\frac{d y}{d x}+P(x) y=f(x)
$$

We obtain a general solution in the form $y=y_{c}+y_{p}$ using an integrating factor.

General Solution of First Order Linear ODE

- Put the equation in standard form $y^{\prime}+P(x) y=f(x)$, and correctly identify the function $P(x)$.
- Obtain the integrating factor $\mu(x)=\exp \left(\int P(x) d x\right)$.
- Multiply both sides of the equation (in standard form) by the integrating factor μ. The left hand side will always collapse into the derivative of a product

$$
\frac{d}{d x}[\mu(x) y]=\mu(x) f(x)
$$

- Integrate both sides, and solve for y.

$$
y(x)=\frac{1}{\mu(x)} \int \mu(x) f(x) d x=e^{-\int P(x) d x}\left(\int e^{\int P(x) d x} f(x) d x+C\right)
$$

Solve the ODE
This is in stander form with
$\frac{d y}{d x}+y=3 x e^{-x}$

$$
P(x)=1
$$

Integrating factor $\mu=e^{\int P_{a x} d x}=e^{\int d x}=e^{x}$

* In $\int P(x) d x$, we con tale the constant of integration to be anything. Isct it to zero.

Multiply, the ODE by μ

$$
e^{x} \frac{d y}{d x}+e^{x} y=e^{x}\left(3 x e^{-x}\right)=3 x e^{x} e^{-x}=3 x
$$

$$
\frac{d}{d x}\left(e^{x} y\right)=3 x
$$

Integrate $\int \frac{d}{d x}\left(e^{x} y\right) d x=\int 3 x d x$

$$
e^{x} y=\frac{3}{2} x^{2}+C
$$

(This step required the constant of integration.)
Divide by μ to get the solution y.

$$
\begin{aligned}
y=\frac{\frac{3}{2} x^{2}+C}{e^{x}} & y_{c}
\end{aligned}=C e^{-x} \text { and }
$$

January 18, $2019 \quad 4$ / 38

Solve the IVP

$$
x \frac{d y}{d x}-y=2 x^{2}, x>0 \quad y(1)=5
$$

Put the ODE in standard form (divide by x)

$$
\begin{aligned}
& \frac{d y}{d x}-\frac{1}{x} y=\frac{2 x^{2}}{x}=2 x \\
& P(x)=\frac{-1}{x}
\end{aligned}
$$

Build the integrating factor $\mu=e$

$$
\mu=e^{\int \frac{-1}{x} d x}=e^{-\ln x}=e^{\ln x^{-1}}=x^{-1}
$$

$$
\begin{gathered}
x^{-1} \frac{d y}{d x}-x^{-1}\left(\frac{1}{x}\right) y=x^{-1}(2 x) \\
\frac{d}{d x}\left(x^{-1} y\right)=2 \\
\int \frac{d}{d x}\left(x^{-1} y\right) d x=\int 2 d x \\
x^{-1} y=2 x+C \\
y=\frac{2 x+C}{x^{-1}}=2 x^{2}+C x
\end{gathered}
$$

The general solution to the ODE is

$$
y=2 x^{2}+C x
$$

Now impose the initial condition $y(1)=5$

$$
\begin{gathered}
5=2\left(1^{2}\right)+C(1)=2+C \\
\Rightarrow \quad C=3
\end{gathered}
$$

The solution to the IV P is

$$
y=2 x^{2}+3 x
$$

Verify
Just for giggles, lets verify that our solution $y=2 x^{2}+3 x$ really does solve the differential equation we started with

$$
x \frac{d y}{d x}-y=2 x^{2}
$$

weill substitute: $y=2 x^{2}+3 x, y^{\prime}=4 x+3$

$$
\begin{aligned}
x(4 x+3)-\left(2 x^{2}+3 x\right) & = \\
4 x^{2}+3 x-2 x^{2}-3 x & = \\
4 x^{2}-2 x^{2} & = \\
2 x^{2} & =2 x^{2} \quad \text { Ta } D a!
\end{aligned}
$$

Steady and Transient States

For some linear equations, the term y_{c} decays as x (or t) grows. For example

$$
\frac{d y}{d x}+y=3 x e^{-x} \text { has solution } y=\frac{3}{2} x^{2} e^{-x}+C e^{-x} .
$$

Here, $y_{p}=\frac{3}{2} x^{2} e^{-x}$ and $y_{c}=C e^{-x}$.

Such a decaying complementary solution is called a transient state.
The corresponding particular solution is called a steady state.

Bernoulli Equations

Suppose $P(x)$ and $f(x)$ are continuous on some interval (a, b) and n is a real number different from 0 or 1 (not necessarily an integer). An equation of the form

$$
\frac{d y}{d x}+P(x) y=f(x) y^{n}
$$

is called a Bernoulli equation.

Observation: This equation has the flavor of a linear ODE, but since $n \neq 0,1$ it is necessarily nonlinear. So our previous approach involving an integrating factor does not apply directly. Fortunately, we can use a change of variables to obtain a related linear equation.

