January 23 Math 3260 sec. 56 Spring 2018

Section 1.2: Row Reduction and Echelon Forms

A few things to recall:

- Row equivalent matrices correspond to equivalent systems.
- The rref for a matrix is unique.
- The pivot positions and pivot columns correspond to the locations of the leading ones in an rref.

< ロ > < 同 > < 回 > < 回 >

January 19, 2018

Echelon Form & Solving a System

Consider the reduced echelon matrix. Identify the pivot positions. Then, describe the solution set for the system of equations whose augmented matrix is row equivalent.

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 & -2 & 4 \\ 0 & 0 & 0 & 1 & 0 & -9 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{\text{pivot positions, pivot columns}}_{\text{are rolumns}} 4.$$

$$\begin{array}{c} \text{rolumns} & 1, 3, \text{and } 4. \\ \text{The system reader as} \\ x_1 + x_2 & = 3 \\ x_2 - 2x_3 = 4 \\ x_4 & = -9 \\ 0 = 0 \quad \text{falwess} \\ \text{for a list formet as} \\ \text{for a list formet as} \\ \text{for a list formet as} \end{array}$$

January 19, 2018 2 / 70

January 19, 2018 3 / 70

୬ବଙ

◆□ → ◆□ → ◆臣 → ◆臣 → □臣

・ロマ・山下・山下・山下・山下・山下

free in terms of frees.

▲ロト ◆ ● ト ◆ ● ト ◆ ● ト ● ● 今 ○ ○
January 19, 2018 5 / 70

Consistent versus Inconsistent Systems

Consider each rref. Determine if the underlying system (the one with this as its augmented matrix) is consistent or inconsistent.

・ロト・・日本・・ヨト・ヨー・ヨー・シーマー・シーマー・
January 19, 2018 6/70

An Existence and Uniqueness Theorem

Theorem: A linear system is consistent if and only if the right most column of the augmented matrix is **NOT** a pivot column. That is, if and only if each echelon form **DOES NOT** have a row of the form

 $[0 \ 0 \ \cdots \ 0 \ b]$, for some nonzero b.

If a linear system is consistent, then it has

(i) exactly one solution if there are no free variables, or

(ii) infinitely many solutions if there is at least one free variable.

Section 1.3: Vector Equations

Definition: A matrix that consists of one column is called a **column vector** or simply a **vector**.

The set of vectors of the form $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ with x_1 and x_2 any real numbers is denoted by \mathbb{R}^2 (read "R two"). It's the set of all real ordered pairs.

January 19, 2018

Geometry

Each vector $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ corresponds to a point in the Cartesian plane. We can equate them with ordered pairs written in the traditional format $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = (x_1, x_2)$. This is not to be confused with a row matrix. $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \neq \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \neq \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

We can identify vectors with points or with directed line segments emanating from the origin (little arrows).

> January 19, 2018

Geometry

Figure: Vectors characterized as points, and vectors characterized as directed line segments.

January 19, 2018

Algebraic Operations Let $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$, and c be a scalar¹. Scalar Multiplication: The scalar multiple of u

The U. M. Juz JU, V2 are called entries

 $C\mathbf{u} = \begin{vmatrix} CU_1 \\ CU_2 \end{vmatrix}$. Component Vector Addition: The sum of vectors u and v

$$\mathbf{u} + \mathbf{v} = \left[\begin{array}{c} u_1 + v_1 \\ u_2 + v_2 \end{array} \right]$$

Vector Equivalence: Equality of vectors is defined by

 $\mathbf{u} = \mathbf{v}$ if and only if $u_1 = v_1$ and $u_2 = v_2$.

¹A scalar is an element of the set from which u_1 and u_2 come. For our purposes, a scalar is a *real* number.

$$\mathbf{u} = \begin{bmatrix} 4 \\ -2 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} -1 \\ 7 \end{bmatrix}, \text{ and } \mathbf{w} = \begin{bmatrix} -3 \\ \frac{3}{2} \end{bmatrix}$$

Evaluate
(a) $-2\mathbf{u} : -7 \begin{bmatrix} 4 \\ -2 \end{bmatrix} : \begin{bmatrix} -2 \cdot 4 \\ 2 \cdot (-2) \end{bmatrix} : \begin{bmatrix} -8 \\ 4 \end{bmatrix}$
 $3\sqrt[3]{} : 3 \begin{bmatrix} -1 \\ -7 \end{bmatrix} : \begin{bmatrix} 3(-1) \\ 3 \cdot 7 \end{bmatrix} : \begin{bmatrix} -3 \\ 21 \end{bmatrix}$
(b) $-2\mathbf{u}+3\mathbf{v}$
 $: \begin{bmatrix} -8 \\ 4 \end{bmatrix} + \begin{bmatrix} -3 \\ 21 \end{bmatrix} : \begin{bmatrix} -8 + (-3) \\ 4 + 21 \end{bmatrix} : \begin{bmatrix} -11 \\ 25 \end{bmatrix}$

January 19, 2018 12 / 70

Э.

Examples

$$\mathbf{u} = \begin{bmatrix} 4 \\ -2 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} -1 \\ 7 \end{bmatrix}, \text{ and } \mathbf{w} = \begin{bmatrix} -3 \\ \frac{3}{2} \end{bmatrix}$$

Is it true that $\mathbf{w} = -\frac{3}{4}\mathbf{u}$? $-\frac{3}{4}\mathbf{u} = \frac{-3}{4}\begin{bmatrix} 4 \\ -2 \end{bmatrix} = \begin{bmatrix} -\frac{3}{4}(4) \\ -\frac{3}{4}(-2) \end{bmatrix}, \begin{bmatrix} -3 \\ \frac{3}{2} \end{bmatrix}$

January 19, 2018 13 / 70

◆□> ◆圖> ◆ヨ> ◆ヨ> 「ヨ」

Geometry of Algebra with Vectors

Figure: Left: $\frac{1}{2}(-4, 1) = (-2, 1/2)$. Right: (-4, 1) + (2, 5) = (-2, 6)

ם א < @ א < ב א < ב א ב א ב < יי) < פ January 19, 2018 14 / 70

Geometry of Algebra with Vectors

Scalar Multiplication: stretches or compresses a vector but can only change direction by an angle of 0 (if c > 0) or π (if c < 0). We'll see that $0\mathbf{u} = (0,0)$ for any vector \mathbf{u} .

Geometry of Algebra with Vectors

Vector Addition: The sum $\mathbf{u} + \mathbf{v}$ of two vectors (each different from (0,0)) is the the fourth vertex of a parallelogram whose other three vertices are (u_1, u_2) , (v_1, v_2) , and (0,0).

January 19, 2018 16 / 70

Vectors in \mathbb{R}^n

A vector in \mathbb{R}^3 is a 3 \times 1 column matrix. These are ordered triples. For example

$$\mathbf{a} = \begin{bmatrix} 1\\ 3\\ -1 \end{bmatrix}, \quad \text{or} \quad \mathbf{x} = \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix}$$

A vector in \mathbb{R}^n for $n \ge 2$ is a $n \times 1$ column matrix. These are ordered *n*-tuples. For example

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = (\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \dots, \mathbf{x}_n)$$

.

The Zero Vector: is the vector whose entries are all zeros. It will be denoted by **0** or $\vec{0}$ and is not to be confused with the scalar 0.

Algebraic Properties on \mathbb{R}^n

For every **u**, **v**, and **w** in \mathbb{R}^n and scalars *c* and d^2

(i)
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
 (v) $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
(ii) $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ (vi) $(c + d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
(iii) $\mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u} = \mathbf{u}$ (vii) $c(d\mathbf{u}) = d(c\mathbf{u}) = (cd)\mathbf{u}$
(iv) $\mathbf{u} + (-\mathbf{u}) = -\mathbf{u} + \mathbf{u} = \mathbf{0}$ (viii) $1\mathbf{u} = \mathbf{u}$

²The term $-\mathbf{u}$ denotes $(-1)\mathbf{u}$.

January 19, 2018 18 / 70

イロト イポト イヨト イヨト

Definition: Linear Combination

A linear combination of vectors $\mathbf{v}_1, \dots \mathbf{v}_p$ in \mathbb{R}^n is a vector \mathbf{y} of the form

$$\mathbf{y} = c_1 \mathbf{v}_1 + \cdots + c_p \mathbf{v}_p$$

where the scalars c_1, \ldots, c_p are often called weights.

For example, suppose we have two vectors \mathbf{v}_1 and \mathbf{v}_2 . Some linear combinations include

$$3\mathbf{v}_1, \quad -2\mathbf{v}_1+4\mathbf{v}_2, \quad \frac{1}{3}\mathbf{v}_2+\sqrt{2}\mathbf{v}_1, \quad \text{and} \quad \mathbf{0}=0\mathbf{v}_1+0\mathbf{v}_2.$$

January 19, 2018 19 / 70

Example

Let
$$\mathbf{a}_{1} = \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix}$$
, $\mathbf{a}_{2} = \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} -2 \\ -2 \\ -3 \end{bmatrix}$. Determine if \mathbf{b} can
be written as a linear combination of \mathbf{a}_{1} and \mathbf{a}_{2} .
Restricted, do then exist scolars $c_{1,2}c_{2}$ such that
 $c_{1,3} + c_{2,3}c_{2} = \mathbf{b}$? Counting with it,
 $c_{1,3} + c_{2,3}c_{2} = \mathbf{b}$? Counting with it,
 $c_{1,3} + c_{2,3}c_{2} = \mathbf{b}$? Counting $c_{1,4} + c_{1,3}c_{2,3}$
 $\Rightarrow \begin{bmatrix} c_{1} \\ -2 \\ -1 \end{bmatrix} + c_{2} \begin{bmatrix} 3c_{1} \\ 0 \\ 2c_{2} \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \\ -3 \end{bmatrix}$
 $\Rightarrow \begin{bmatrix} c_{1} + 3c_{2} \\ -2c_{1} \\ -c_{1} + 2c_{2} \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \\ -2 \\ -3 \end{bmatrix}$

By vector equality, this requires

$$c_1 + 3c_2 = -2$$
 Our question reduces to
 $-2c_1 = -2$ whether this linear
 $-c_1 + 2c_2 = -3$ System is consistent,

January 19, 2018 21 / 70

୬ବଙ

We see that the system is consistent; in fact
then is one solution
$$C_1=1$$
, $C_2=-1$.

Some Convenient Notation

Letting
$$\mathbf{a}_1 = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix}$, and in general $\mathbf{a}_j = \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{bmatrix}$, for $j = 1, ..., n$, we can denote the $m \times n$ matrix whose columns are these vectors by

$$[\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n] = \begin{bmatrix} a_{11} \ a_{12} \ \cdots \ a_{1n} \\ a_{21} \ a_{22} \ \cdots \ a_{2n} \\ \vdots \ \vdots \ \vdots \ \vdots \\ a_{m1} \ a_{m2} \ \cdots \ a_{mn} \end{bmatrix}.$$

Note that each vector \mathbf{a}_j is a vector in \mathbb{R}^m .

January 19, 2018 23 / 70

2

イロト イヨト イヨト イヨト

Vector and Matrix Equations

The vector equation

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n = \mathbf{b}$$

has the same solution set as the linear system whose augmented matrix is

$$[\mathbf{a}_1 \quad \mathbf{a}_2 \quad \cdots \quad \mathbf{a}_n \quad \mathbf{b}] \,. \tag{1}$$

January 19, 2018

24/70

In particular, **b** is a linear combination of the vectors $\mathbf{a}_1, \ldots, \mathbf{a}_n$ if and only if the linear system whose augmented matrix is given in (1) is consistent.

Definition of **Span**

Let $S = {\mathbf{v}_1, \dots, \mathbf{v}_p}$ be a set of vectors in \mathbb{R}^n . The set of all linear combinations of $\mathbf{v}_1, \ldots, \mathbf{v}_p$ is denoted by

 $\operatorname{Span}\{\mathbf{v}_1,\ldots,\mathbf{v}_p\}=\operatorname{Span}(S).$

It is called the subset of \mathbb{R}^n spanned by (a.k.a. generated by) the set { $v_1, ..., v_p$ }.

To say that a vector **b** is in Span{ v_1, \ldots, v_p } means that there exists a set of scalars c_1, \ldots, c_p such that **b** can be written as

 $C_1 \mathbf{V}_1 + \cdots + C_p \mathbf{V}_p$.

イロト 不得 トイヨト イヨト ヨー ろくの January 19, 2018

Span: Equivalent Statements

If **b** is in Span{ $\mathbf{v}_1, \ldots, \mathbf{v}_p$ }, then $\mathbf{b} = c_1 \mathbf{v}_1 + \cdots + c_p \mathbf{v}_p$. From the previous result, we know this is equivalent to saying that the vector equation

$$x_1\mathbf{v}_1+\cdots+x_p\mathbf{v}_p=\mathbf{b}$$

has a solution. This is in turn the same thing as saying the linear system with augmented matrix

$$[\mathbf{v}_1 \cdots \mathbf{v}_p \mathbf{b}]$$

January 19, 2018

26/70

is consistent.

Examples
Let
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$
, and $\mathbf{a}_2 = \begin{bmatrix} -1 \\ 4 \\ -2 \end{bmatrix}$.
(a) Determine if $\mathbf{b} = \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix}$ is in Span $\{\mathbf{a}_1, \mathbf{a}_2\}$.
This is equivalent to asking if the system of
any noted matrix $\begin{bmatrix} 3 & 4 \\ 2 \\ 1 \end{bmatrix}$ is consistent.
 $\begin{bmatrix} 4 & 2 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 \\ 1 \end{bmatrix}$ is in Span $\{\mathbf{a}_1, \mathbf{a}_2\}$.
This is equivalent to asking if the system of
any noted matrix $\begin{bmatrix} 3 & 4 \\ 4 & 5 \end{bmatrix}$ is consistent.
 $\begin{bmatrix} 4 & 3 & 6 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 4 \\ 1 & 4 & 2 \\ 2 & -2 & 1 \end{bmatrix}$ for each of the system of the sy

January 19, 2018 27 / 70

・ロト・西ト・ヨト・ヨー うへの

Right most Column is a pivot column; the system is in consistent bis not in spon {a, a, }.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

(b) Determine if
$$\mathbf{b} = \begin{bmatrix} 5 \\ -5 \\ 10 \end{bmatrix}$$
 is in Span{ $\mathbf{a}_1, \mathbf{a}_2$ }.

$$\begin{bmatrix} 1 & -1 & 5 \\ 1 & 4 & -5 \\ 2 & -2 & 10 \end{bmatrix} \xrightarrow{\text{rre } \mathbf{f}} \begin{bmatrix} 1 & 0 & 7 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$
Gensis feat
 \mathbf{b} is in Span { $\mathbf{a}_1, \mathbf{a}_2$ }. In fact $\mathbf{b} = 3\mathbf{a}_1 - 2\mathbf{a}_2$.

↓ ロ ト ◆ ● ト ◆ ● ト ◆ ● ト ● ● ○ へ ○
January 19, 2018 29 / 70