January 23 Math 3260 sec. 56 Spring 2018

Section 1.2: Row Reduction and Echelon Forms

A few things to recall:
» Row equivalent matrices correspond to equivalent systems.

» The rref for a matrix is unique.

» The pivot positions and pivot columns correspond to the locations
of the leading ones in an rref.
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Echelon Form & Solving a System

Consider the reduced echelon matrix. Identify the pivot positions.
Then, describe the solution set for the system of equations whose
augmented matrix is row equivalent.
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Consistent versus Inconsistent Systems
Consider each rref. Determine if the underlying system (the one with
this as its augmented matrix) is consistent or inconsistent.

1200 100 0 {0 2 3
001 4/, 010 4 |, 0110
0000 00 1 .3 ot
’Xl :-ZYL XI =0 L}SS— (o rcc‘\s,
XL < % )
Xq= v 3 s 00)
X-L'c{le 3 B .
G {\—bw\’ Ihe §bs\1v\ Ve
Y
Cons')s\'va' . W(\{L&hk'
pQ - meny soldong EX“-C)’\\? onx
SCﬂbxkﬁg«\

January 19, 2018

6/70



An Existence and Uniqueness Theorem

Theorem: A linear system is consistent if and only if the right most
column of the augmented matrix is NOT a pivot column. That is, if and
only if each echelon form DOES NOT have a row of the form

[00 --- 0 b], forsome nonzero b.

If a linear system is consistent, then it has

(i) exactly one solution if there are no free variables, or

(i) infinitely many solutions if there is at least one free variable.
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Section 1.3: Vector Equations

Definition: A matrix that consists of one column is called a column
vector or simply a vector.
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is denoted by R? (read "R two”). It’s the set of all real ordered pairs.

The Cettsia  ploac,

The set of vectors of the form [ ;(1 } with x; and xo any real numbers
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Geometry

Each vector [ X
X2

can equate them with ordered pairs written in the traditional format

[ ? ] = (x1, X2). This is not to be confused with a row matrix.
2
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We can identify vectors with points or with directed line segments
emanating from the origin (little arrows).
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Geometry
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Figure: Vectors characterized as points, and vectors characterized as
directed line segments.
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Scalar Multiplication: The scalar multiple of u

X
cu = |: Cun :| & CQM‘NNM

cu2 NS
Vector Addition: The sum of vectors u and v /
[

u V-
u+v:{ " 1}

Us + Vo

Vector Equivalence: Equality of vectors is defined by

u=v ifandonlyif uy=vi and u, = vo.

A scalar is an element of the set from which u; and u» come. For our purposes, a
scalar is a real number.
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Examples
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Examples
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Geometry of Algebra with Vectors
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Figure: Left: 1(—4,1) = (-2,1/2). Right: (—4,1) + (2,5) = (—2,6)
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Geometry of Algebra with Vectors

Scalar Multiplication: stretches or compresses a vector but can only

change direction by an angle of 0 (if ¢ > 0) or = (if ¢ < 0). We'll see
that Ou = (0, 0) for any vector u.
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Geometry of Algebra with Vectors

Vector Addition: The sum u + v of two vectors (each different from

(0,0)) is the the fourth vertex of a parallelogram whose other three
vertices are (uy, Us), (v1, v2), and (0, 0).
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Vectors in R"

A vector in R% is a 3 x 1 column matrix. These are ordered triples. For
example

1 Xq
a— 3 |, or x=| X
—1 X3

A vector in R" for n > 2 is a n x 1 column matrix. These are ordered
n-tuples. For example

X1
X2

X = . - (X,JX))Xi)--.)'X"\
Xn

The Zero Vector: is the vector whose entries are all zeros. It will be
denoted by 0 or 0 and is not to be confused with the scalar 0.
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Algebraic Properties on R”

For every u, v, and w in R” and scalars ¢ and d?

(i) u+v=v+u (v) c(u+v)=cu+cv
(i) (u+v)+w=u+(v+w) (v (c+du=cu+du
(i) u+0=0+u=u (vii) c(du) =d(cu) = (cd)u

(iv) u+(—u)=—-u+u=0 (vii) lu=u

2The term —u denotes (—1)u.
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Definition: Linear Combination

A linear combination of vectors vy,... v, in R" is a vector y of the form
Y =C{Vi+ -+ CpVp

where the scalars cy, . .., ¢, are often called weights.

For example, suppose we have two vectors vy and v,. Some linear
combinations include

’
3vqy, —2vq + 4v,, g2+ Vv2vy, and 0= 0vq + Ovs.
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Some Convenient Notation

art a2 ayj
. a1 ao2 . aoj
Letting a; = . , A0 = , and in general a; = , for
ami amp

j=1,...,n, we can denote the m x n matrix whose columns are these
vectors by

ayn a2 -+ Ain
axy ap -+ Azp

[ay a2 -+ ap = . . . .
am ame amn

Note that each vector a; is a vector in RM,
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Vector and Matrix Equations

The vector equation

Xja1 + Xoa2+ -+ xpap=Db

has the same solution set as the linear system whose augmented
matrix is

[ay a2 --- ap b]. (1)

In particular, b is a linear combination of the vectors a4, ..., a, if and

only if the linear system whose augmented matrix is given in (1) is
consistent.
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Definition of Span

Let S = {vy,...,Vp} be a set of vectors in R". The set of all linear
combinations of vy, ..., Vv, is denoted by

Span{vy,...,vp} = Span(S).

It is called the subset of R"” spanned by (a.k.a. generated by) the
set {vy,...,Vp}.

To say that a vector b is in Span{vy,...,v,} means that there exists a
set of scalars ¢y, ..., Cp such that b can be written as
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Span: Equivalent Statements

If bis in Span{vy,...,Vp}, thenb = ¢ivy + --- + cpVp. From the
previous result, we know this is equivalent to saying that the vector
equation

X1V1+"'+Xpr:b

has a solution. This is in turn the same thing as saying the linear
system with augmented matrix

[vi -+ Vp b]

is consistent.
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Examples
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5
(b) Determineifb= | —5 | isin Span{ay,az}.
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