January 23 Math 3260 sec. 56 Spring 2018

Section 1.2: Row Reduction and Echelon Forms

A few things to recall:

- Row equivalent matrices correspond to equivalent systems.
- The rref for a matrix is unique.
- The pivot positions and pivot columns correspond to the locations of the leading ones in an rref.

Echelon Form \& Solving a System
Consider the reduced echelon matrix. Identify the pivot positions. Then, describe the solution set for the system of equations whose augmented matrix is row equivalent.

$$
\left[\begin{array}{cccccc}
1 & 1 & 0 & 0 & 0 & 3 \\
0 & 0 & 1 & 0 & -2 & 4 \\
0 & 0 & 0 & 1 & 0 & -9 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$pivot positions, pivot columns are columns 1,3 , and 4 .

$$
\begin{aligned}
x_{1}+x_{2} \quad & =3 \\
x_{3} \quad-2 x_{5} & =4 \\
x_{4} & =-9 \\
0 & =0 \text { talwass } \\
& \text { true }
\end{aligned}
$$

we can arrange the solutions in list format as

$$
\begin{aligned}
& x_{1}=3-x_{2} \\
& x_{3}=4+2 x_{5} \\
& x_{4}=-9
\end{aligned}
$$

x_{2} and x_{5} con be any red number
well call x_{2} and x_{s} free variables.
we could write $x_{2}=3-x_{1}$; however, we will follow the convention that free variables Correspond to non -pivot columns.

The remaining vanichles are called basic variables, here x_{1}, x_{3}, x_{4}.

Basic variable \leftrightarrows pivot column
free variables \leftrightarrow non pivot column.

We will stick with the convention that basic vaidales may be expressed in terms of free variables.
we never express basics in terms of basics, free in temp of basics, or
freee in tenms of frees.

Consistent versus Inconsistent Systems
Consider each ref. Determine if the underlying system (the one with this as its augmented matrix) is consistent or inconsistent.

$$
\begin{aligned}
& {\left[\begin{array}{llll}
1 & 2 & 0 & 0 \\
0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0
\end{array}\right], \quad\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 4 \\
0 & 0 & 1 & -3
\end{array}\right], \quad\left[\begin{array}{llll}
1 & 0 & 2 & 3 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]} \\
& x_{1}=-2 x_{2} \\
& x_{1}=0 \\
& x_{2}=4 \\
& x_{3}=-3 \\
& \text { Consistent } \\
& \text { Consistent } \\
& \text { D-many solutions Exactly one } \\
& \text { Solution } \\
& \text { Last row reads } \\
& \text { as } 0=1 \text {. } \\
& \text { The system is } \\
& \text { in consistent. }
\end{aligned}
$$

An Existence and Uniqueness Theorem

Theorem: A linear system is consistent if and only if the right most column of the augmented matrix is NOT a pivot column. That is, if and only if each echelon form DOES NOT have a row of the form
$\left[\begin{array}{lllll}0 & 0 & \cdots & 0 & b\end{array}\right]$, for some nonzero b.

If a linear system is consistent, then it has
(i) exactly one solution if there are no free variables, or
(ii) infinitely many solutions if there is at least one free variable.

Section 1.3: Vector Equations

Definition: A matrix that consists of one column is called a column vector or simply a vector.

In print, vectors are denoted using bold face. In hand writing, an arrow is placed over a vector. eng. \vec{u}, \vec{v}.

The set of vectors of the form $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ with x_{1} and x_{2} any real numbers is denoted by \mathbb{R}^{2} (read " R two"). It's the set of all real ordered pairs.

The Cartesian ploce.

Geometry

Each vector $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ corresponds to a point in the Cartesian plane. We can equate them with ordered pairs written in the traditional format $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left(x_{1}, x_{2}\right)$. This is not to be confused with a row matrix.

We can identify vectors with points or with directed line segments emanating from the origin (little arrows).

Geometry

Figure: Vectors characterized as points, and vectors characterized as directed line segments.

Algebraic Operations

Let $\mathbf{u}=\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right], \mathbf{v}=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$, and c be a scalar ${ }^{1}$.
The $u_{1}, u_{2}, v_{1}, v_{2}$
are called entries or components.
Scalar Multiplication: The scalar multiple of \mathbf{u}

$$
c \mathbf{u}=\left[\begin{array}{l}
c u_{1} \\
c u_{2}
\end{array}\right] . \leftarrow \underset{\substack{\text { component }}}{\leftarrow}
$$

Vector Addition: The sum of vectors \mathbf{u} and \mathbf{v}

$$
\mathbf{u}+\mathbf{v}=\left[\begin{array}{l}
u_{1}+v_{1} \\
u_{2}+v_{2}
\end{array}\right]
$$

Vector Equivalence: Equality of vectors is defined by

$$
\mathbf{u}=\mathbf{v} \quad \text { if and only if } \quad u_{1}=v_{1} \quad \text { and } \quad u_{2}=v_{2}
$$

${ }^{1} \mathrm{~A}$ scalar is an element of the set from which u_{1} and u_{2} come. For our purposes, a scalar is a real number.

Examples

$$
\mathbf{u}=\left[\begin{array}{c}
4 \\
-2
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{c}
-1 \\
7
\end{array}\right], \quad \text { and } \quad \mathbf{w}=\left[\begin{array}{c}
-3 \\
\frac{3}{2}
\end{array}\right]
$$

Evaluate
(a) $-2 \mathbf{u}=-2\left[\begin{array}{l}4 \\ -2\end{array}\right]=\left[\begin{array}{l}-2 \cdot 4 \\ -2 \cdot(-2)\end{array}\right]=\left[\begin{array}{l}-8 \\ 4\end{array}\right]$

$$
3 \vec{v}=3\left[\begin{array}{c}
-1 \\
7
\end{array}\right]=\left[\begin{array}{l}
3(-1) \\
3.7
\end{array}\right]=\left[\begin{array}{l}
-3 \\
21
\end{array}\right]
$$

(b) $-2 \mathbf{u}+3 \mathbf{v}$

$$
=\left[\begin{array}{c}
-8 \\
4
\end{array}\right]+\left[\begin{array}{l}
-3 \\
21
\end{array}\right]=\left[\begin{array}{c}
-8+(-3) \\
4+21
\end{array}\right]=\left[\begin{array}{c}
-11 \\
25
\end{array}\right]
$$

Examples

$$
\mathbf{u}=\left[\begin{array}{c}
4 \\
-2
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{c}
-1 \\
7
\end{array}\right], \quad \text { and } \quad \mathbf{w}=\left[\begin{array}{c}
-3 \\
\frac{3}{2}
\end{array}\right]
$$

Is it true that $\mathbf{w}=-\frac{3}{4} \mathbf{u}$? $\quad \frac{-3}{4} \vec{u}=\frac{-3}{4}\left[\begin{array}{c}4 \\ -2\end{array}\right]=\left[\begin{array}{l}\frac{-3}{4}(4) \\ \frac{-3}{4}(-2)\end{array}\right]=\left[\begin{array}{c}-3 \\ \frac{3}{2}\end{array}\right]$
Each corresponding eatery is equivalent, so yes $\vec{\omega}=\frac{-3}{4} \vec{u}$.

Geometry of Algebra with Vectors

Figure: Left: $\frac{1}{2}(-4,1)=(-2,1 / 2)$. Right: $(-4,1)+(2,5)=(-2,6)$

Geometry of Algebra with Vectors

Scalar Multiplication: stretches or compresses a vector but can only change direction by angle of 0 (if $c>0$) or π (if $c<0$). We'll see that $0 \mathbf{u}=(0,0)$ for any vector \mathbf{u}.

Geometry of Algebra with Vectors

Vector Addition: The sum $\mathbf{u}+\mathbf{v}$ of two vectors (each different from $(0,0)$) is the the fourth vertex of a parallelogram whose other three vertices are $\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)$, and $(0,0)$.

Vectors in \mathbb{R}^{n}

A vector in \mathbb{R}^{3} is a 3×1 column matrix. These are ordered triples. For example

$$
\mathbf{a}=\left[\begin{array}{c}
1 \\
3 \\
-1
\end{array}\right], \quad \text { or } \quad \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

A vector in \mathbb{R}^{n} for $n \geq 2$ is a $n \times 1$ column matrix. These are ordered n-tuples. For example

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] .=\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)
$$

The Zero Vector: is the vector whose entries are all zeros. It will be denoted by $\mathbf{0}$ or $\overrightarrow{0}$ and is not to be confused with the scalar 0 .

Algebraic Properties on \mathbb{R}^{n}

For every \mathbf{u}, \mathbf{v}, and \mathbf{w} in \mathbb{R}^{n} and scalars c and d^{2}
(i) $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
(v) $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$
(ii) $\quad(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w}) \quad$ (vi) $\quad(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$
(iii) $\mathbf{u}+\mathbf{0}=\mathbf{0}+\mathbf{u}=\mathbf{u}$
(vii) $\quad c(d \mathbf{u})=d(c \mathbf{u})=(c d) \mathbf{u}$
(iv) $\mathbf{u}+(-\mathbf{u})=-\mathbf{u}+\mathbf{u}=\mathbf{0} \quad$ (viii) $1 \mathbf{u}=\mathbf{u}$
${ }^{2}$ The term $-\mathbf{u}$ denotes $(-1) \mathbf{u}$.

Definition: Linear Combination

A linear combination of vectors $\mathbf{v}_{1}, \ldots \mathbf{v}_{p}$ in \mathbb{R}^{n} is a vector \mathbf{y} of the form

$$
\mathbf{y}=c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}
$$

where the scalars c_{1}, \ldots, c_{p} are often called weights.

For example, suppose we have two vectors \mathbf{v}_{1} and \mathbf{v}_{2}. Some linear combinations include

$$
3 \mathbf{v}_{1}, \quad-2 \mathbf{v}_{1}+4 \mathbf{v}_{2}, \quad \frac{1}{3} \mathbf{v}_{2}+\sqrt{2} \mathbf{v}_{1}, \quad \text { and } \quad \mathbf{0}=0 \mathbf{v}_{1}+0 \mathbf{v}_{2}
$$

Example
Let $\mathbf{a}_{1}=\left[\begin{array}{c}1 \\ -2 \\ -1\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{l}3 \\ 0 \\ 2\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{c}-2 \\ -2 \\ -3\end{array}\right]$. Determine if \mathbf{b} can be written as a linear combination of \mathbf{a}_{1} and \mathbf{a}_{2}.

Restated, do then exist scolders c_{1}, c_{2} such that $c_{1} \vec{a}_{1}+c_{2} \stackrel{a}{a}_{2}=\vec{b}$? Working with it,
$c_{1}\left[\begin{array}{c}1 \\ -2 \\ -1\end{array}\right]+c_{2}\left[\begin{array}{l}3 \\ 0 \\ 2\end{array}\right]=\left[\begin{array}{l}-2 \\ -2 \\ -3\end{array}\right]$

$$
\Rightarrow\left[\begin{array}{c}
c_{1} \\
-2 c_{1} \\
-c_{1}
\end{array}\right]+\left[\begin{array}{c}
3 c_{2} \\
0 \\
2 c_{2}
\end{array}\right]=\left[\begin{array}{l}
-2 \\
-2 \\
-3
\end{array}\right] \Rightarrow\left[\begin{array}{l}
-3 \\
c_{1}+3 c_{2} \\
-2 c_{1} \\
-c_{1}+2 c_{2}
\end{array}\right]=\left[\begin{array}{l}
-2 \\
-2 \\
-3
\end{array}\right]
$$

By vector equality, this require

$$
\begin{aligned}
c_{1}+3 c_{2} & =-2 \\
-2 c_{1} & =-2 \\
-c_{1}+2 c_{2} & =-3
\end{aligned}
$$

Our question reduces to whether this linear system is consistent.

Note this has augmented matrix

$$
\left[\begin{array}{ccc}
1 & 3 & -2 \\
-2 & 0 & -2 \\
-1 & 2 & -3
\end{array}\right]
$$

This matrix has ref $\left[\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0\end{array}\right]$
we see that the system is consistent; in fact then is one solution $c_{1}=1, c_{2}=-1$.

So y, \vec{b} is a linear combination of \vec{a}_{1}, \vec{a}_{2} with weights $c_{1}=1, c_{2}=-1$.

Some Convenient Notation

Letting $\mathbf{a}_{1}=\left[\begin{array}{c}a_{11} \\ a_{21} \\ \vdots \\ a_{m 1}\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{c}a_{12} \\ a_{22} \\ \vdots \\ a_{m 2}\end{array}\right]$, and in general $\mathbf{a}_{j}=\left[\begin{array}{c}a_{1 j} \\ a_{2 j} \\ \vdots \\ a_{m j}\end{array}\right]$, for
$j=1, \ldots, n$, we can denote the $m \times n$ matrix whose columns are these vectors by

$$
\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}
\end{array}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right] .
$$

Note that each vector \mathbf{a}_{j} is a vector in \mathbb{R}^{m}.

Vector and Matrix Equations

The vector equation

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n}=\mathbf{b}
$$

has the same solution set as the linear system whose augmented matrix is

$$
\left[\begin{array}{lllll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n} & \mathbf{b} \tag{1}
\end{array}\right]
$$

In particular, \mathbf{b} is a linear combination of the vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ if and only if the linear system whose augmented matrix is given in (1) is consistent.

Definition of Span

Let $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ be a set of vectors in \mathbb{R}^{n}. The set of all linear combinations of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ is denoted by

$$
\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}=\operatorname{Span}(S)
$$

It is called the subset of \mathbb{R}^{n} spanned by (a.k.a. generated by) the set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$.

To say that a vector \mathbf{b} is in $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ means that there exists a set of scalars c_{1}, \ldots, c_{p} such that \mathbf{b} can be written as

$$
c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}
$$

Span: Equivalent Statements

If \mathbf{b} is in $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$, then $\mathbf{b}=c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}$. From the previous result, we know this is equivalent to saying that the vector equation

$$
x_{1} \mathbf{v}_{1}+\cdots+x_{p} \mathbf{v}_{p}=\mathbf{b}
$$

has a solution. This is in turn the same thing as saying the linear system with augmented matrix

$$
\left[\mathbf{v}_{1} \cdots \cdots \mathbf{v}_{p} \mathbf{b}\right]
$$

is consistent.

Examples
Let $\mathbf{a}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$, and $\mathbf{a}_{2}=\left[\begin{array}{c}-1 \\ 4 \\ -2\end{array}\right]$.
(a) Determine if $\mathbf{b}=\left[\begin{array}{l}4 \\ 2 \\ 1\end{array}\right]$ is in $\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}$.

This is equivalent to asking if the system el augmented matrix $\left[\vec{a}_{1}, \vec{a}_{2}, \vec{b}\right]$ is consistent.

$$
\left[\begin{array}{lll}
\vec{a}_{1} & \vec{a}_{2} & \vec{b}
\end{array}\right]=\left[\begin{array}{ccc}
1 & -1 & 4 \\
1 & 4 & 2 \\
2 & -2 & 1
\end{array}\right] \xrightarrow{\text { ref }}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Right most column is a pivot column; the system is in consistent
\vec{b} is not in $\operatorname{span}\left\{\vec{a}_{1}, \vec{a}_{2}\right\}$.
(b) Determine if $\mathbf{b}=\left[\begin{array}{c}5 \\ -5 \\ 10\end{array}\right]$ is in $\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}$.

$$
\left[\begin{array}{ccc}
1 & -1 & 5 \\
1 & 4 & -5 \\
2 & -2 & 10
\end{array}\right] \xrightarrow{\text { ref }}\left[\begin{array}{ccc}
1 & 0 & 3 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right]
$$

consistent
\vec{b} is in $\operatorname{span}\left\{\vec{a}_{1}, \vec{a}_{2}\right\}$. In fact $\vec{b}=3 \vec{a}_{1}-2 \vec{a}_{2}$.

