
January 23 Math 3260 sec. 56 Spring 2018

Section 1.2: Row Reduction and Echelon Forms

A few things to recall:
I Row equivalent matrices correspond to equivalent systems.

I The rref for a matrix is unique.

I The pivot positions and pivot columns correspond to the locations
of the leading ones in an rref.
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Echelon Form & Solving a System
Consider the reduced echelon matrix. Identify the pivot positions.
Then, describe the solution set for the system of equations whose
augmented matrix is row equivalent.


1 1 0 0 0 3
0 0 1 0 −2 4
0 0 0 1 0 −9
0 0 0 0 0 0
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Consistent versus Inconsistent Systems
Consider each rref. Determine if the underlying system (the one with
this as its augmented matrix) is consistent or inconsistent.

 1 2 0 0
0 0 1 4
0 0 0 0

 ,
 1 0 0 0

0 1 0 4
0 0 1 −3

 ,
 1 0 2 3

0 1 1 0
0 0 0 1
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An Existence and Uniqueness Theorem

Theorem: A linear system is consistent if and only if the right most
column of the augmented matrix is NOT a pivot column. That is, if and
only if each echelon form DOES NOT have a row of the form

[0 0 · · · 0 b], for some nonzero b.

If a linear system is consistent, then it has

(i) exactly one solution if there are no free variables, or

(ii) infinitely many solutions if there is at least one free variable.
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Section 1.3: Vector Equations

Definition: A matrix that consists of one column is called a column
vector or simply a vector.

The set of vectors of the form
[

x1
x2

]
with x1 and x2 any real numbers

is denoted by R2 (read ”R two”). It’s the set of all real ordered pairs.
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Geometry

Each vector
[

x1
x2

]
corresponds to a point in the Cartesian plane. We

can equate them with ordered pairs written in the traditional format[
x1
x2

]
= (x1, x2). This is not to be confused with a row matrix.

[
x1
x2

]
6= [x1 x2]

We can identify vectors with points or with directed line segments
emanating from the origin (little arrows).
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Geometry

Figure: Vectors characterized as points, and vectors characterized as
directed line segments.
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Algebraic Operations
Let u =

[
u1
u2

]
, v =

[
v1
v2

]
, and c be a scalar1.

Scalar Multiplication: The scalar multiple of u

cu =

[
cu1
cu2

]
.

Vector Addition: The sum of vectors u and v

u + v =

[
u1 + v1
u2 + v2

]

Vector Equivalence: Equality of vectors is defined by

u = v if and only if u1 = v1 and u2 = v2.

1A scalar is an element of the set from which u1 and u2 come. For our purposes, a
scalar is a real number.
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Examples

u =

[
4
−2

]
, v =

[
−1
7

]
, and w =

[
−3

3
2

]
Evaluate

(a) −2u

(b) −2u+3v
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Examples

u =

[
4
−2

]
, v =

[
−1
7

]
, and w =

[
−3

3
2

]

Is it true that w = −3
4u?
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Geometry of Algebra with Vectors

Figure: Left: 1
2 (−4,1) = (−2,1/2). Right: (−4,1) + (2,5) = (−2,6)
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Geometry of Algebra with Vectors
Scalar Multiplication: stretches or compresses a vector but can only
change direction by an angle of 0 (if c > 0) or π (if c < 0). We’ll see
that 0u = (0,0) for any vector u.
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Geometry of Algebra with Vectors
Vector Addition: The sum u + v of two vectors (each different from
(0,0)) is the the fourth vertex of a parallelogram whose other three
vertices are (u1,u2), (v1, v2), and (0,0).
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Vectors in Rn

A vector in R3 is a 3× 1 column matrix. These are ordered triples. For
example

a =

 1
3
−1

 , or x =

 x1
x2
x3

 .
A vector in Rn for n ≥ 2 is a n × 1 column matrix. These are ordered
n-tuples. For example

x =


x1
x2
...

xn

 .
The Zero Vector: is the vector whose entries are all zeros. It will be
denoted by 0 or ~0 and is not to be confused with the scalar 0.
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Algebraic Properties on Rn

For every u, v, and w in Rn and scalars c and d2

(i) u + v = v + u (v) c(u + v) = cu + cv

(ii) (u + v) + w = u + (v + w) (vi) (c + d)u = cu + du

(iii) u + 0 = 0 + u = u (vii) c(du) = d(cu) = (cd)u

(iv) u + (−u) = −u + u = 0 (viii) 1u = u

2The term −u denotes (−1)u.
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Definition: Linear Combination

A linear combination of vectors v1, . . .vp in Rn is a vector y of the form

y = c1v1 + · · ·+ cpvp

where the scalars c1, . . . , cp are often called weights.

For example, suppose we have two vectors v1 and v2. Some linear
combinations include

3v1, −2v1 + 4v2,
1
3

v2 +
√

2v1, and 0 = 0v1 + 0v2.
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Example

Let a1 =

 1
−2
−1

, a2 =

 3
0
2

, and b =

 −2
−2
−3

. Determine if b can

be written as a linear combination of a1 and a2.
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Some Convenient Notation

Letting a1 =


a11
a21

...
am1

, a2 =


a12
a22

...
am2

, and in general aj =


a1j
a2j
...

amj

, for

j = 1, ...,n, we can denote the m × n matrix whose columns are these
vectors by

[a1 a2 · · · an] =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

...
...

am1 am2 · · · amn

 .
Note that each vector aj is a vector in Rm.
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Vector and Matrix Equations

The vector equation

x1a1 + x2a2 + · · ·+ xnan = b

has the same solution set as the linear system whose augmented
matrix is

[a1 a2 · · · an b] . (1)

In particular, b is a linear combination of the vectors a1, . . . ,an if and
only if the linear system whose augmented matrix is given in (1) is
consistent.

January 19, 2018 24 / 70



Definition of Span

Let S = {v1, . . . ,vp} be a set of vectors in Rn. The set of all linear
combinations of v1, . . . ,vp is denoted by

Span{v1, . . . ,vp} = Span(S).

It is called the subset of Rn spanned by (a.k.a. generated by) the
set {v1, . . . ,vp}.

To say that a vector b is in Span{v1, . . . ,vp} means that there exists a
set of scalars c1, . . . , cp such that b can be written as

c1v1 + · · ·+ cpvp.
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Span: Equivalent Statements

If b is in Span{v1, . . . ,vp}, then b = c1v1 + · · ·+ cpvp. From the
previous result, we know this is equivalent to saying that the vector
equation

x1v1 + · · ·+ xpvp = b

has a solution. This is in turn the same thing as saying the linear
system with augmented matrix

[v1 · · · vp b]

is consistent.
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Examples

Let a1 =

 1
1
2

, and a2 =

 −1
4
−2

.

(a) Determine if b =

 4
2
1

 is in Span{a1,a2}.
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(b) Determine if b =

 5
−5
10

 is in Span{a1,a2}.
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