January 24 MATH 1112 sec. 54 Spring 2020

Average Rate of Change \& Difference Quotients

Figure: Consider points $(x, f(x))$ and $(x+h, f(x+h))$ on the graph of f and the straight line through them. This line is called a secant line.

Average Rate of Change: Difference Quotients
Let f be defined at x and $x+h$ for nonzero number h. The line passing through $(x, f(x))$ and $(x+h, f(x+h)$) is called a secant line. Determine its slope.

$$
\begin{array}{cc}
\left(x_{1}, f(x)\right) & (x+h, f(x+h)) \\
x_{1} y_{1} & x_{2}, y_{2}
\end{array}
$$

$$
\begin{aligned}
\frac{\Delta y}{\Delta x}= & \frac{f(x+h)-f(x)}{x+h-x} \\
& =\frac{f(x+h)-f(x)}{h}
\end{aligned}
$$

The result is called a difference quotient. It is the average rate of change of f on the interval $[x, x+h]$.

Example

For $h \neq 0$, construct and simplify the difference quotient $\frac{f(x+h)-f(x)}{h}$ for $f(x)=\frac{1}{x}$.

$$
\begin{aligned}
\frac{f(x+h)-f(x)}{h} & =\frac{\frac{1}{x+h}-\frac{1}{x}}{h} \\
& =\left(\frac{\frac{1}{x+h}-\frac{1}{x}}{h}\right) \frac{x(x+h)}{x(x+h)} \approx \\
& =\frac{\frac{1}{x+h}(x(x+h))-\frac{1}{x} x(x+h)}{h x(x+h)}
\end{aligned}
$$

Clear fractions multiply ard divide by $x(x+h)$

$$
\begin{aligned}
& =\frac{x-(x+h)}{h x(x+h)} \\
& =\frac{x-x-h}{h x(x+h)} \\
& =\frac{-h}{h x(x+h)} \\
& =\frac{-1}{x(x+h)}
\end{aligned}
$$

Question

The difference quotient $\frac{f(x+h)-f(x)}{h}$ for $f(x)=3 x^{2}-x$ is
(a) $6 x+3 h-1$
(b) $3 h+1$
(c) $\frac{3 h^{2}-2 x+h}{h}$

$$
\begin{aligned}
f(x+h) & =3(x+h)^{2}-(x+h) \\
& =3\left(x^{2}+2 x h+h^{2}\right)-x-h
\end{aligned}
$$

$$
\frac{f(x+h)-f(x)}{h}=\frac{3 x^{2}+6 x h+3 h^{2}-x-h-3 x^{2}+x}{h}
$$

(d) $6 x-1$
(e) none of the above is the correct answer

Compositions

Suppose a spherical balloon is inflated so that the radius after time t seconds is given by the function $r(t)=2 t \mathrm{~cm}$. The volume of a sphere of radius r is known to be $V(r)=\frac{4}{3} \pi r^{3}$. Note that

- r is a function of t, and
- V is a function of r, making
- V a function of t (through its dependence on r). In fact,

$$
V(t)=V(r(t))=\frac{4}{3} \pi(2 t)^{3}=\frac{32}{3} \pi t^{3}
$$

This is an example of a composition of functions.

Composition: Definition and Notation

Let f and g be functions. Then the composite function denoted

$$
f \circ g
$$

also called the composition of f and g, is defined by

$$
(f \circ g)(x)=f(g(x))
$$

The domain of $f \circ g$ is the set of all x in the domain of g such that $g(x)$ is in the domain of f.

The expression $f \circ g$ is read " f composed with g ", and $(f \circ g)(x)$ is read " f of g of x ".

Example

Let $f(x)=\sqrt{x-1}$ and $g(x)=\frac{2}{x+1}$. Evaluate each expression if possible.
(a) $(f \circ g)(1)=f(g(1))=f(1)=\sqrt{1-1}=0$
(b) $(g \circ f)(1)=g(f(1))=g(0)=\frac{2}{0+1}=2$

$$
f(1)=\sqrt{1-1}=0
$$

(c) $(f \circ g)(0)=f(s(0))=f(2)=\sqrt{2-1}=1$
(d) $(g \circ f)(0)=g(f(0))$ is undefined

$$
f(0)=\sqrt{0-1}
$$

since $f(0)$ is undefined.

Question

True/False: Suppose f and g are functions. The compositions

$$
f \circ g \text { and } g \circ f
$$

are equal.
(a) True, and I'm confident
(b) True, but I'm not sure
(c) False, and I'm confident
(d) False, but l'm not sure

