
January 24 Math 1190 sec. 62 Spring 2017

Section 1.1: Limits of Functions Using Numerical and Graphical
Techniques

Definition: Let f be defined on an open interval containing the number
c except possibly at c. Then

lim
x→c

f (x) = L

provided the value of f (x) can be made arbitrarily close to the number
L by taking x sufficiently close to c but not equal to c.
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One Sided Limits
Left Hand Limit: We write

lim
x→c−

f (x) = LL

and say the limit as x approaches c from the left of f (x) equals LL
provided we can make f (x) arbitrarily close to the number LL by taking
x sufficiently close to, but less than c.

Right Hand Limit: We write

lim
x→c+

f (x) = LR

and say the limit as x approaches c from the right of f (x) equals LR
provided we can make f (x) arbitrarily close to the number LR by taking
x sufficiently close to, but greater than c.
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Observations

Observation 1: The limit L of a function f (x) as x approaches c does
not depend on whether f (c) exists or what it’s value may be.

Observation 2: If lim
x→c

f (x) = L, then the number L is unique. That is, a
function can not have two different limits as x approaches a single
number c.

Observation 3: A function need not have a limit as x approaches c. If
f (x) can not be made arbitrarily close to any one number L as x
approaches c, then we say that lim

x→c
f (x) does not exist (shorthand

DNE).
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A Limit Failing to Exist

Consider H(x) =
{

0, x < 0
1, x ≥ 0

.

We determined using a graph that

lim
x→0−

H(x) = 0, and lim
x→0+

H(x) = 1.

Since there is no unique number L such that H(x) gets arbitrarily close
to L when x is sufficiently close to zero, it turns out that

lim
x→0

H(x) Does not exits.
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Weakness of Technology
Suppose we wish to investigate

lim
x→0

sin
( π

x2

)
.

We consider values of x closer to zero, and plug them into a calculator.
Let’s look at two attempts.

x sin
(
π
x2

)
−0.1 0
−0.01 0
−0.001 0

0 undefined
0.001 0
0.01 0

0.1 0

x sin
(
π
x2

)
−2

3 0.707
− 2

13 0.707
− 2

23 0.707
0 undefined
2
23 0.707
2
13 0.707
2
3 0.707
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Weakness of Technology
In every interval containing zero, the graph of sin(π/x2) passes
through every y -value between −1 and 1 infinitely many times.

Figure: y = sin
(

π
x2

)
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Evaluating Limits

As this example illustrates, we would like to avoid too much reliance on
technology for evaluating limits. The next section will be devoted to
techniques for doing this for reasonably well behaved functions. We
close with one theorem.

Theorem: Let f be defined on an open interval containing c except
possible at c. Then

lim
x→c

f (x) = L

if and only if
lim

x→c−
f (x) = L and lim

x→c+
f (x) = L.
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Limits from a graph

Evaluate lim
x→1−

f (x)
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Limits from a graph

January 20, 2017 9 / 62



Question

lim
x→1+

f (x) =

(a) 4 (b) -2 (c) DNE (d) 1
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Section 1.2: Limits of Functions Using Properties of
Limits

We begin with two of the simplest limits we may encounter.

Theorem: If f (x) = A where A is a constant, then for any real number
c

lim
x→c

f (x) = lim
x→c

A = A

Theorem: If f (x) = x , then for any real number c

lim
x→c

f (x) = lim
x→c

x = c
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Examples

(a) lim
x→0

7 =

(b) lim
x→π+

3π =

(c) lim
x→−

√
5

x =
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Question

lim
x→4−

x =

(a) x

(b) -4

(c) 4

(d) the one sided limit can’t be determined
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Additional Limit Law Theorems
Suppose

lim
x→c

f (x) = L, lim
x→c

g(x) = M, and k is constant.

Theorem: (Sums) lim
x→c

(f (x)+g(x)) = L+M

Theorem: (Differences) lim
x→c

(f (x)−g(x)) = L−M

Theorem: (Constant Multiples) lim
x→c

kf (x) = kL

Theorem: (Products) lim
x→c

f (x)g(x) = LM
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Examples
Use the limit law theorems to evaluate if possible

(a) lim
x→2

(3x+2)
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Examples
Use the limit law theorems to evaluate if possible

(b) lim
x→−3

(x+1)2
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Examples
Use the limit law theorems to evaluate if possible

(c) lim
x→0

f (x) where f (x) =


x + 2, x < 0

1, x = 0
2x − 3, x > 0

January 20, 2017 17 / 62



January 20, 2017 18 / 62



Question

(1) lim
x→1

f (x) where f (x) =
{

x2 + 1, x ≤ 1
3− x , x > 1

(a) 4

(b) 2

(c) 1

(d) DNE
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Additional Limit Law Theorems

Suppose lim
x→c

f (x) = L and n is a positive integer.

Theorem: (Power) lim
x→c

(f (x))n = Ln

Note in particular that this tells us that lim
x→c

xn = cn.

Theorem: (Root) lim
x→c

n
√

f (x) = n
√

L (if this is defined)

Combining the sum, difference, constant multiple and power laws:
Theorem: If P(x) is a polynomial, then

lim
x→c

P(x) = P(c).
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Question

(1) lim
x→2

(3x2−4x+7) =

(a) 7

(b) DNE

(c) −11

(d) 11
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Notation Reminder

The notation ” lim
x→c

” is always followed by a function expression and
never immediately by an equal sign.
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Question

(2) Suppose that we have determined that lim
x→7

f (x) = 13.

True or False: It is acceptable to write this as

” lim
x→7

= 13 ”
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Additional Limit Law Theorems

Suppose lim
x→c

f (x) = L, lim
x→c

g(x) = M and M 6= 0

Theorem: (Quotient) lim
x→c

f (x)
g(x)

=
L
M

Combined with our result for polynomials:

Theorem: If R(x) = p(x)
q(x) is a rational function, and c is in the domain

of R, then
lim
x→c

R(x) = R(c).
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Examples

Evaluate lim
x→2

x2 + 5
x2 + x − 1
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Examples

Evaluate lim
x→1

√
x + 1

x + 5
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Additional Techniques: When direct laws fail

Evaluate if possible lim
x→2

x2 − x − 2
x2 − 4
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Additional Techniques: When direct laws fail

Evaluate if possible lim
x→1

√
x + 3− 2
x − 1
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Question

Evaluate if possible lim
x→2

x − 2
√

x −
√

2

(a) 1√
2

(b)
√

2

(c) DNE

(d) 2
√

2
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Observations

In limit taking, the form ”0
0” sometimes appears. This is called an

indeterminate form. Standard strategies are

(1) Try to factor the numerator and denominator to see if a common
factor–(x − c)–can be cancelled.

(2) If dealing with roots, try rationalizing to reveal a common factor.

The form
”

nonzero constant
0

”

is not indeterminate. It is undefined. When it appears, the limit doesn’t
exist.
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