January 24 Math 3260 sec. 55 Spring 2020

Section 1.4: The Matrix Equation $A\mathbf{x} = \mathbf{b}$.

Definition Let A be an $m \times n$ matrix whose columns are the vectors $\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n$ (each in \mathbb{R}^m), and let \mathbf{x} be a vector in \mathbb{R}^n . Then the product of A and \mathbf{x} , denoted by

Ax

is the linear combination of the columns of \boldsymbol{A} whose weights are the corresponding entries in \boldsymbol{x} . That is

$$A\mathbf{x}=x_1\mathbf{a}_1+x_2\mathbf{a}_2+\cdots+x_n\mathbf{a}_n.$$

(Note that the result is a vector in \mathbb{R}^m !)

Find the product Ax. Simplify to the extent possible.

$$A = \begin{bmatrix} 1 & 0 & -3 \\ -2 & -1 & 4 \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}_{\text{in}}$$

$$A \stackrel{?}{\times} = \underset{?}{\times}_{1} \stackrel{?}{a}_{1} + \underset{?}{\times}_{2} \stackrel{?}{a}_{2} + \underset{?}{\times}_{3} \stackrel{?}{a}_{3}$$

$$= \underset{?}{\times}_{1} \stackrel{?}{a}_{1} + \underset{?}{\times}_{2} \stackrel{?}{a}_{2} + \underset{?}{\times}_{3} \stackrel{?}{a}_{3}$$

$$= \underset{?}{\times}_{1} \stackrel{?}{a}_{1} + \underset{?}{\times}_{2} \stackrel{?}{a}_{2} + \underset{?}{\times}_{3} \stackrel{?}{a}_{3}$$

$$= \underset{?}{\times}_{1} \stackrel{?}{a}_{1} + \underset{?}{\times}_{2} \stackrel{?}{a}_{2} + \underset{?}{\times}_{3} \stackrel{?}{a}_{3}$$

$$= \underset{?}{\times}_{1} \stackrel{?}{a}_{1} + \underset{?}{\times}_{2} \stackrel{?}{a}_{2} + \underset{?}{\times}_{3} \stackrel{?}{a}_{3}$$

$$= \underset{?}{\times}_{1} \stackrel{?}{a}_{1} + \underset{?}{\times}_{2} \stackrel{?}{a}_{2} + \underset{?}{\times}_{3} \stackrel{?}{a}_{3}$$

$$= \underset{?}{\times}_{1} \stackrel{?}{a}_{1} + \underset{?}{\times}_{1} \stackrel{?}{a}_{1} + \underset{?}{\times}_{2} \stackrel{?}{a}_{2} + \underset{?}{\times}_{3} \stackrel{?}{a}_{3}$$

 $\begin{array}{cccc} & & & \\ & & & \\ \times & & & 3 \times 1 \rightarrow & 2 \times 1 \end{array}$

Find the product Ax. Simplify to the extent possible.

$$A = \begin{bmatrix} 2 & 4 \\ -1 & 1 \\ 0 & 3 \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}_{3}^{2}$$

$$3 \times 2$$

$$A \stackrel{?}{\times} = \times_{1} \stackrel{?}{\wedge}_{1} + \times_{2} \stackrel{?}{\wedge}_{2} = -3 \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} + 2 \begin{bmatrix} 4 \\ 3 \end{bmatrix}$$

$$= \begin{bmatrix} -6 & +8 \\ 3 & +2 \\ 0 & +6 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}$$

Write the linear system as a vector equation and then as a matrix equation of the form $A\mathbf{x} = \mathbf{b}$.

$$2x_1 - 3x_2 + x_3 = 2$$

$$x_1 + x_2 + = -1$$
Uniting at a vector equation
$$x_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} + x_2 \begin{bmatrix} -3 \\ 1 \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$
equivolent to
$$\begin{bmatrix} 2 & -3 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$
Are the partial equation of the par

4/36

Theorem

If *A* is the $m \times n$ matrix whose columns are the vectors \mathbf{a}_1 , \mathbf{a}_2 , \cdots , \mathbf{a}_n , and **b** is in \mathbb{R}^m , then the matrix equation

$$A\mathbf{x} = \mathbf{b}$$

of avorious

has the same solution set as the vector equation

$$x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \cdots + x_n \mathbf{a}_n = \mathbf{b}$$

which, in turn, has the same solution set as the linear system of equations whose augmented matrix is

$$[\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n \ \mathbf{b}].$$

6/36

Corollary

The equation $A\mathbf{x} = \mathbf{b}$ has a solution if and only if \mathbf{b} is a linear combination of the columns of A.

In other words, the corresponding linear system is consistent if and only if **b** is in Span $\{a_1, a_2, \dots, a_n\}$.

Characterize the set of all vectors $\mathbf{b} = (b_1, b_2, b_3)$ such that $A\mathbf{x} = \mathbf{b}$ has a solution where

$$A = \begin{bmatrix} 1 & 3 & 4 \\ -4 & 2 & -6 \\ -3 & -2 & -7 \end{bmatrix}.$$
We can use the argmeted matrix [A b] to invest; gate solvability.

$$[A \ b] = \begin{bmatrix} 1 & 3 & 4 & b_1 \\ -4 & 2 & -b & b_2 \\ -3 & -2 & -7 & b_3 \end{bmatrix} \quad \text{Look for an}$$

$$4R, +R_2 \rightarrow R_2$$

$$3R, +R_3 \rightarrow R_3$$

$$\begin{bmatrix} 1 & 3 & 4 & b_{1} \\ 0 & 14 & 10 & b_{2}+4b_{1} \\ 0 & 7 & 5 & b_{3}+3b_{1} \end{bmatrix} -2R_{3} * R_{3}$$

$$\begin{bmatrix} 1 & 3 & 4 & b_{1} \\ 0 & 14 & 10 & b_{2}+4b_{1} \\ 0 & -14 & -10 & -2b_{3}-6b_{1} \end{bmatrix}$$

$$R_{2}+R_{3} \Rightarrow R_{7}$$

$$\begin{bmatrix} 1 & 3 & 4 & b_{1} \\ 0 & 14 & 10 & b_{2}+4b_{1} \\ 0 & 0 & 0 & -2b_{7}-6b_{1}+b_{2}+4b_{1} \end{bmatrix}$$

The system is consistent provided the 4th Column is not a pivot column.

That holds if
$$-2b_3 - 2b_1 + b_2 = 0$$

Ax = b is consistent if b solves the system $-2b_1 + b_2 - 2b_3 = 0$

This has augmented matrix

$$\begin{bmatrix} -2 & 1 & -2 & 0 \end{bmatrix} \xrightarrow{\text{ref}} \begin{bmatrix} 1 & -1 & 2 & 1 & 0 \\ -\frac{1}{2} & p_1 & p_2 & p_3 \end{bmatrix}$$

A solution

$$b_1 = \frac{1}{2}b_2 - b_3$$

$$b_2 = \begin{bmatrix} \frac{1}{2}b_2 - b_3 \\ b_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{2}b_2 - b_3 \\ b_3 \end{bmatrix} + \begin{bmatrix} -b_3 \\ b_3 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{2}b_2 \\ b_3 \end{bmatrix} + \begin{bmatrix} -b_3 \\ b_3 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{2}b_2 \\ b_3 \end{bmatrix} + \begin{bmatrix} -b_3 \\ b_3 \end{bmatrix}$$

January 24, 2020 10/36