January 25 Math 2306 sec. 54 Spring 2019

Section 4: Bernoulli Equations

Suppose $P(x)$ and $f(x)$ are continuous on some interval (a, b) and n is a real number different from 0 or 1 (not necessarily an integer). An equation of the form

$$
\frac{d y}{d x}+P(x) y=f(x) y^{n}
$$

is called a Bernoulli equation.

Observation: This equation has the flavor of a linear ODE, but since $n \neq 0,1$ it is necessarily nonlinear. So our previous approach involving an integrating factor does not apply directly. Fortunately, we can use a change of variables to obtain a related linear equation.

Solving the Bernoulli Equation

$$
\frac{d y}{d x}+P(x) y=f(x) y^{n}
$$

Let u be a new dependent variable defined by

$$
u=y^{1-n} \text {. Then } \frac{d u}{d x}=(1-n) y^{1-n-1} \frac{d y}{d x}=(1-n) y^{-n} \frac{d y}{d x}
$$

Divide the ODE by y^{n}

$$
\underbrace{y^{-n} \frac{d y}{d x}}_{\frac{1}{1-n} \frac{d u}{d x}}+P(x) \underbrace{y^{-n} y}_{y^{1-n}}=f(x) \underbrace{y^{n} y^{-n}}_{1}
$$

The equation for u is

$$
\frac{1}{1-n} \frac{d u}{d x}+P(x) u=f(x) \quad * \quad n \neq 1 \text { so } \begin{aligned}
1-n & \neq 0
\end{aligned}
$$

u solves the $1^{\text {st }}$ order linear equation

$$
\frac{d u}{d x}+(1-n) P(x) u=(1-n) f(x)
$$

Note the form

$$
\frac{d u}{d x}+P_{1}(x) u=f_{1}(x)
$$

where $P_{1}(x)=(1-n) P(x)$ and $f_{1}(x)=(1-n) f(x)$

Solve for us using on integrating factor.
Since $u=y^{1-n}, y=u^{\frac{1}{1-n}}$

Example
Solve the initial value problem $y^{\prime}-y=-e^{2 x} y^{3}$, subject to $y(0)=1$.
The equation is a Bernalli ODE $\quad \frac{d y}{d x}-y=-e^{2 x} y^{3}, n=3$.
Let $u=y^{1-3}=y^{-2}$. Then $\frac{d u}{d x}=-2 y^{-3} \frac{d y}{d x}$
Divide by y^{3}

$$
\begin{gathered}
y^{-3} \frac{d y}{d x}-y^{-3} y=-e^{2 x} y^{3} y^{-3} \\
-\frac{1}{2} \frac{d u}{d x} \quad u \quad 1
\end{gathered}
$$

So u solves the ODE $\quad \frac{-1}{2} \frac{d u}{d x}-u=-e^{2 x}$.

In standard form

$$
\frac{d u}{d x}+2 u=2 e^{2 x} \quad P_{1}(x)=2
$$

The integrating factor $\mu=e^{\int p_{1}(x) d x}=e^{\int 2 d x}=e^{2 x}$
using μ

$$
\begin{aligned}
& \frac{d}{d x}\left(e^{2 x} u\right)=2 e^{2 x} e^{2 x}=2 e^{4 x} \\
& \int \frac{d}{d x}\left(e^{2 x} u\right) d x=\int 2 e^{4 x} d x \\
& e^{2 x} u=\frac{1}{2} e^{4 x}+C \\
& u=\frac{\frac{1}{2} e^{4 x}+C}{e^{2 x}}=\frac{1}{2} e^{2 x}+C e^{-2 x}
\end{aligned}
$$

$$
\begin{gathered}
u=y^{-2} \text { so } y=u^{-\frac{1}{2}}=\frac{1}{\sqrt{u}} \\
y=\frac{1}{\sqrt{\frac{1}{2} e^{2 x}+C e^{-2 x}}} .
\end{gathered}
$$

Now impose $y(0)=1$.

$$
\begin{aligned}
1=\frac{1}{\sqrt{\frac{1}{2} e^{0}+C e^{0}}} & =\frac{1}{\sqrt{\frac{1}{2}+C}} \\
\sqrt{\frac{1}{2}+C} & =1 \\
\frac{1}{2}+C=1^{2} & =1 \Rightarrow C=1-\frac{1}{2}=\frac{1}{2}
\end{aligned}
$$

The solution to the IVP is

$$
\begin{aligned}
y & =\frac{1}{\sqrt{\frac{1}{2} e^{2 x}+\frac{1}{2} e^{-2 x}}}=\frac{1}{\sqrt{\frac{1}{2}} \sqrt{e^{2 x}+e^{-2 x}}} \\
& =\frac{\sqrt{2}}{\sqrt{e^{2 x}+e^{-2 x}}}
\end{aligned}
$$

The solution to the IVP is

$$
y=\frac{\sqrt{2}}{\sqrt{e^{2 x}+e^{-2 x}}}
$$

Exact Equations

We considered first order equations of the form

$$
\begin{equation*}
M(x, y) d x+N(x, y) d y=0 \tag{1}
\end{equation*}
$$

The left side is called a differential form. We will assume here that M and N are continuous on some (shared) region in the plane.

Definition: The equation (1) is called an exact equation on some rectangle R if there exists a function $F(x, y)$ such that

$$
\frac{\partial F}{\partial x}=M(x, y) \quad \text { and } \quad \frac{\partial F}{\partial y}=N(x, y)
$$

for every (x, y) in R. with respect to x

$$
\text { TPerivotive of } F{ }^{d y} \uparrow \text { Derivative of } F \text { wry }
$$

$$
\text { holding } y \text { constant }
$$

Exact Equation Solution

If $M(x, y) d x+N(x, y) d y=0$ happens to be exact, then it is equivalent to

$$
\frac{\partial F}{\partial x} d x+\frac{\partial F}{\partial y} d y=0
$$

This implies that the function F is constant on R and solutions to the
DE are given by the relation

$$
F(x, y)=C
$$

The relation defines solutions to the ODE implicitly.

Recognizing Exactness

There is a theorem from calculus that ensures that if a function F has first partials on a domain, and if those partials are continuous, then the second mixed partials are equal. That is,

$$
\frac{\partial^{2} F}{\partial y \partial x}=\frac{\partial^{2} F}{\partial x \partial y} .
$$

If it is true that

$$
\frac{\partial F}{\partial x}=M \quad \text { and } \quad \frac{\partial F}{\partial y}=N
$$

this provides a condition for exactness, namely

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

$$
\begin{aligned}
& \text { IF } \frac{\partial F}{\partial x}=M \text {, then } \\
& \frac{\partial^{2} F}{\partial y \partial x}=\frac{\partial M}{\partial y} \\
& \text { and } \\
& \text { IF } \frac{\partial F}{\partial y}=N \text {, then } \\
& \frac{\partial^{2} F}{\partial x \partial y}=\frac{\partial N}{\partial x}
\end{aligned}
$$

Exact Equations

Theorem: Let M and N be continuous on some rectangle R in the plane. Then the equation

$$
M(x, y) d x+N(x, y) d y=0
$$

is exact if and only if

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Example
Show that the equation is exact and obtain a family of solutions.

$$
\begin{gathered}
\left(2 x y-\sec ^{2} x\right) d x+\left(x^{2}+2 y\right) d y=0 \\
M(x, y)=2 x y-\sec ^{2} x \text { and } N(x, y)=x^{2}+2 y \\
\frac{\partial M}{\partial y}=\frac{\partial}{\partial y}\left(2 x y-\sec ^{2} x\right)=2 x \cdot 1-0=2 x
\end{gathered}
$$

Treat x as a constant

$$
\frac{\partial N}{\partial x}=\frac{\partial}{\partial x}\left(x^{2}+2 y\right)=2 x+0=2 x
$$

Treat y as a constant
$\frac{\partial M}{\partial y}=2 x \frac{\partial N}{\partial x}$ the equation is exact.
The solutions are given by the relation

$$
F(x, y)=C
$$

for some function F. we know that

$$
\begin{aligned}
& \frac{\partial F}{\partial x}=M(x, y)=2 x y-\sec ^{2} x \quad \text { and } \\
& \frac{\partial F}{\partial y}=N(x, y)=x^{2}+2 y
\end{aligned}
$$

This is enough information to find F up to an added constant.

