January 25 Math 2306 sec. 54 Spring 2019

Section 4: Bernoulli Equations

Suppose P(x) and f(x) are continuous on some interval (a, b) and nis
a real number different from 0 or 1 (not necessarily an integer). An
equation of the form

dy

o TPy =10y”

is called a Bernoulli equation.

Observation: This equation has the flavor of a linear ODE, but since
n # 0,1 it is necessarily nonlinear. So our previous approach involving
an integrating factor does not apply directly. Fortunately, we can use a
change of variables to obtain a related linear equation.
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Solving the Bernoulli Equation

dy — fx)y"
g TPy =1(x)y
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Example

Solve the initial value problem y’ — y = —ezxy3, subject to y(0) = 1.
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Exact Equations

We considered first order equations of the form
M(x,y)dx + N(x,y)dy = 0. (1)

The left side is called a differential form. We will assume here that M
and N are continuous on some (shared) region in the plane.

Definition: The equation (1) is called an exact equation on some
rectangle R if there exists a function F(x, y) such that

oF

oF
8X:M(X’y) and ai_N(X7y)

'\Dcﬁvo\-x\»{op F \ bkr'\vo\‘i\!t OF F (,.\Vt
for every (x,y)in R. . respesr + " \rw\c‘v\g X Consia .

ho\é'\'\é 9 Constent

January 24, 2019 10/29


lritter
Pen

lritter
Pen

lritter
Pen

lritter
Pen

lritter
Pen

lritter
Pen

lritter
Pen


Exact Equation Solution

If M(x,y)dx + N(x,y)dy = 0 happens to be exact, then it is
equivalent to

oF oF

This implies that the function F is constant on R and solutions to the

DE are given by the relation

F(x.y)=C
T»\ %\03'\0"‘ AQ(’"\QJ Ca\u\\ﬁwl‘ -‘-o r\/‘\ bbg N‘—\e\\Cn\H‘
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Recognizing Exactness

There is a theorem from calculus that ensures that if a function F has
first partials on a domain, and if those partials are continuous, then the
second mixed partials are equal. That is,

PF  OPF FE e
dyox  0xoy’
CASEP )
If it is true that M T pu
ﬁ =M and 8—,: =N > o
ox oy awd
this provides a condition for exactness, namely \F %‘;_ = N b
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Exact Equations

Theorem: Let M and N be continuous on some rectangle R in the
plane. Then the equation

M(x,y)dx + N(x,y)dy =0

is exact if and only if
oM _ N
dy  0x’
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Example
Show that the equation is exact and obtain a family of solutions.

(2xy —sec® x) dx + (x* +2y)dy =0

A
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