January 25 Math 2306 sec. 57 Spring 2018

Section 4: First Order Equations: Linear

We will find the general solution of the first order linear equation in
standard form
dy

ax + P(x)y = f(x).

We assume that P and f are continuous on the domain of definition.

The general solution (a 1-parameter family) will have the form

Y=Y+ Yp

where y, is the complementary solution to the associated
homogeneous equation (y’ + Py = 0) and y, is called a particular
solution.
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Derivation of Solution via Integrating Factor
Solve the equation in standard form

dy
g TPy =1(x)
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General Solution of First Order Linear ODE

» Put the equation in standard form y’ + P(x)y = f(x), and correctly
identify the function P(x).

» Obtain the integrating factor (x) = exp (| P(x) dx).
» Multiply both sides of the equation (in standard form) by the

integrating factor 1. The left hand side will always collapse into
the derivative of a product

& 1)) = nx)10).

» Integrate both sides, and solve for y.

yx) = —— / H()F(x) dx = e I Px)ox ( / el P9 (x) ax + c)
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Solve the ODE
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Solve the IVP
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Verify

Just for giggles, lets verify that our solution y = 2x? + 3x really does
solve the differential equation we started with
ay 02
xa —y =2x".
\¢ -0 dy -
\9.2)(1’2){/ Mo = Yx +73
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Steady and Transient States

For some linear equations, the term y. decays as x (or t) grows. For
example

dy = —X i _3 2 —X —X
a+y—3xe has solution y=3x"e + Ce .

Here, yp= gxze‘x and y, = Ce™*.

Such a decaying complementary solution is called a transient state.

The corresponding particular solution is called a steady state.
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