January 25 Math 3260 sec. 55 Spring 2018

Section 1.3: Vector Equations

Recall that we had defined vectors as matrices consisting of a single column. We denote the collection of such vectors with n real components by \mathbb{R}^{n}. That is, a vector \mathbf{u} in \mathbb{R}^{n} has the form

$$
\mathbf{u}=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right]
$$

where each u_{i} is a real number called a component (or entry).

Matrices Expressed in Terms of Columns

Given a collection of vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ in \mathbb{R}^{m}, we can use the notation

$$
\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}
\end{array}\right]
$$

to denote the $m \times n$ matrix whose columns are these vectors. That is

$$
\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}
\end{array}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

Algebraic Operations

For vectors \mathbf{u} and \mathbf{v} and scalar c, we defined the two operations
Scalar Multiplication: $c \mathbf{u}$ is the vector with components $c u_{i}$.
Vector Addition: $\mathbf{u}+\mathbf{v}$ is the vector with components $u_{i}+v_{i}$.

We also define equivalence and the zero vector
Vector Equivalence: $\mathbf{u}=\mathbf{v}$ if and only if $u_{i}=v_{i}$ for each $i=1, \ldots, n$.
Zero Vector: Denoted by $\mathbf{0}$ or $\overrightarrow{0}$, this vector has each component equal to zero.

Algebraic Properties on \mathbb{R}^{n}

For every \mathbf{u}, \mathbf{v}, and \mathbf{w} in \mathbb{R}^{n} and scalars c and d^{1}
(i) $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
(v) $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$
(ii) $\quad(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w}) \quad$ (vi) $\quad(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$
(iii) $\mathbf{u}+\mathbf{0}=\mathbf{0}+\mathbf{u}=\mathbf{u}$
(vii) $\quad c(d \mathbf{u})=d(c \mathbf{u})=(c d) \mathbf{u}$
(iv) $\mathbf{u}+(-\mathbf{u})=-\mathbf{u}+\mathbf{u}=\mathbf{0} \quad$ (viii) $1 \mathbf{u}=\mathbf{u}$
${ }^{1}$ The term $-\mathbf{u}$ denotes $(-1) \mathbf{u}$.

Linear Combinations and Span

Definition: Given a set of vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ in \mathbb{R}^{n}, a linear combination of these vectors is a vector of the form

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}
$$

where the scalars c_{i} are often called weights.

Definition: For a given set of vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ in \mathbb{R}^{n}, the span of this set, denoted

$$
\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}
$$

is the subset of \mathbb{R}^{n} consisting of all possible linear combinations (i.e. allowing the weights to vary over all reals).

Vector and Matrix Equations

For a given set of vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$, the vector equation (in variables x_{i})

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n}=\mathbf{b}
$$

has the same solution set as the linear system whose augmented matrix is

$$
\left[\begin{array}{lllll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n} & \mathbf{b} \tag{1}
\end{array}\right]
$$

If this system is consistent, then we can say that the vector \mathbf{b} is in $\operatorname{Span}\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}$.

Example
Give a geometric description of the subset of \mathbb{R}^{2} given by Span $\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$. Each vector in Spoon $\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$ has the form $\vec{x}=c\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}c \\ c\end{array}\right]$. for some nun ben c. $=(c, c)$

Geountrically, this is the 45° line throws the origin

$\operatorname{Span}\{\mathbf{u}\}$ in \mathbb{R}^{3}

If \mathbf{u} is any nonzero vector in \mathbb{R}^{3}, then $\operatorname{Span}\{\mathbf{u}\}$ is a line through the origin parallel to \mathbf{u}.

$\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$ in \mathbb{R}^{3}

If \mathbf{u} and \mathbf{v} are nonzero, and nonparallel vectors in \mathbb{R}^{3}, then $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$ is a plane containing the origin parallel to both vectors.

Figure: The red and blue vectors are \mathbf{u} and \mathbf{v}. The plane is the collection of all possible linear combinations. (A purple representative is shown.)

Example

Let $\mathbf{u}=(1,1)$ and $\mathbf{v}=(0,2)$ in \mathbb{R}^{2}. Show that for every pair of real numbers a and b, that (a, b) is in $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$.

We want to show that $x_{1} \vec{u}+x_{2} \vec{v}=\left[\begin{array}{l}a \\ b\end{array}\right]$ is always consistent (independent of a and b).

This vector equation is the same as the linear system with augmented matrix

$$
\begin{aligned}
& {\left[\begin{array}{lll}
\vec{u} & \vec{v} & {\left[\begin{array}{l}
a \\
b
\end{array}\right]}
\end{array}\right] } \\
&= {\left[\begin{array}{lll}
1 & 0 & a \\
1 & 2 & b
\end{array}\right] \quad \text { wis reduce to } } \\
& \text { ref }
\end{aligned}
$$

$$
\begin{aligned}
& -R_{1}+R_{2} \rightarrow R_{2} \quad\left[\begin{array}{ccc}
1 & 0 & a \\
0 & 2 & b-a
\end{array}\right]
\end{aligned}
$$

Pretence the system is always consistent telling os that $\left[\begin{array}{l}a \\ b\end{array}\right]$ is in $\operatorname{span}\{\vec{u}, \vec{v}\}$ for any $\left[\begin{array}{l}a \\ b\end{array}\right]$.

In fact, $\quad\left[\begin{array}{l}a \\ b\end{array}\right]=a \vec{u}+\left(\frac{b-a}{2}\right) \vec{v}$.

Section 1.4: The Matrix Equation $\mathbf{A x}=\mathbf{b}$.

Definition Let A be an $m \times n$ matrix whose columns are the vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \cdots, \mathbf{a}_{n}\left(\right.$ each in $\left.\mathbb{R}^{m}\right)$, and let \mathbf{x} be a vector in \mathbb{R}^{n}. Then the product of A and \mathbf{x}, denoted by

Ax

is the linear combination of the columns of A whose weights are the corresponding entries in \mathbf{x}. That is

$$
A \mathbf{x}=x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n}
$$

(Note that the result is a vector in $\mathbb{R}^{m!}$)

Example
Find the product $A \mathbf{x}$. Simplify to the extent possible.

$$
A=\begin{array}{ccc}
{\left[\begin{array}{ccc}
1 & 0 & -3 \\
-2 & -1 & 4
\end{array}\right]} & \mathbf{x}= & {\left[\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right]} \\
3 \text { columns } & \begin{array}{c}
\text { entries }
\end{array}
\end{array}
$$

$$
\begin{aligned}
A \vec{x} & =x_{1} \vec{a}_{1}+x_{2} \vec{a}_{2}+x_{3} \vec{a}_{3} \\
& =2\left[\begin{array}{c}
1 \\
-2
\end{array}\right]+1\left[\begin{array}{c}
0 \\
-1
\end{array}\right]+(-1)\left[\begin{array}{c}
-3 \\
4
\end{array}\right]=\left[\begin{array}{c}
2 \\
-4
\end{array}\right]+\left[\begin{array}{c}
0 \\
-1
\end{array}\right]+\left[\begin{array}{c}
3 \\
-4
\end{array}\right] \\
& =\left[\begin{array}{l}
2+0+3 \\
-4-1-4
\end{array}\right]=\left[\begin{array}{c}
5 \\
-9
\end{array}\right]
\end{aligned}
$$

Example

Find the product $A \mathbf{x}$. Simplify to the extent possible.

$$
\begin{gathered}
A=\left[\begin{array}{cc}
2 & 4 \\
-1 & 1 \\
0 & 3
\end{array}\right] \quad \mathbf{x}=\left[\begin{array}{c}
-3 \\
2
\end{array}\right] \\
2 \text { colunns } \\
\text { zentries } \\
A \vec{x}=x_{1} \vec{a}_{1}+x_{2} \vec{a}_{2}=-3\left[\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right]+2\left[\begin{array}{l}
4 \\
1 \\
3
\end{array}\right]=\left[\begin{array}{c}
-6 \\
3 \\
0
\end{array}\right]+\left[\begin{array}{l}
8 \\
2 \\
6
\end{array}\right]=\left[\begin{array}{l}
2 \\
5 \\
6
\end{array}\right]
\end{gathered}
$$

Example

Write the linear system as a vector equation and then as a matrix equation of the form $A \mathbf{x}=\mathbf{b}$.

$$
\begin{gathered}
2 x_{1}-3 x_{2}+x_{3}=2 \\
x_{1}+x_{2}+=-1 \\
x_{1}\left[\begin{array}{l}
2 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{c}
-3 \\
1
\end{array}\right]+x_{3}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1
\end{array}\right] \\
{\left[\begin{array}{ccc}
2 & -3 & 1 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1
\end{array}\right]} \\
A=\left[\begin{array}{lll}
2 & -3 & 1 \\
1 & 1 & 0
\end{array}\right] \text { and } \vec{b}=\left[\begin{array}{c}
2 \\
-1
\end{array}\right]
\end{gathered}
$$

Note that the matrix A is the coefficient matrix for the linear system. The vector \vec{b} is a column for the rishi hand side, and $\vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ is a variable vector.
The augmented matrix for the linear system is $\left[\begin{array}{ll}A & \vec{b}\end{array}\right]$.

Theorem

If A is the $m \times n$ matrix whose columns are the vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \cdots, \mathbf{a}_{n}$, and \mathbf{b} is in \mathbb{R}^{m}, then the matrix equation

$$
A \mathbf{x}=\mathbf{b}
$$

has the same solution set as the vector equation

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n}=\mathbf{b}
$$

which, in turn, has the same solution set as the linear system of equations whose augmented matrix is

$$
\left[\begin{array}{lllll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n} & \mathbf{b}
\end{array}\right]
$$

Corollary

The equation $A \mathbf{x}=\mathbf{b}$ has a solution if and only if \mathbf{b} is a linear combination of the columns of A.

In other words, the corresponding linear system is consistent if and only if \mathbf{b} is in $\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right\}$.

Example
Characterize the set of all vectors $\mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right)$ such that $A \mathbf{x}=\mathbf{b}$ has a solution where

$$
A=\left[\begin{array}{ccc}
1 & 3 & 4 \\
-4 & 2 & -6 \\
-3 & -2 & -7
\end{array}\right]
$$

$A \vec{x}=\vec{b}$ has a solution if the augmented matrix [A \vec{b}] corresponds to a consistent system.

$$
\left[\begin{array}{cccc}
1 & 3 & 4 & b_{1} \\
-4 & 2 & -6 & b_{2} \\
-3 & -2 & -7 & b_{3}
\end{array}\right]
$$

we need to detumine conditions undue which the last column is not a pivot column.

$$
\begin{aligned}
4 R_{1}+R_{2} \rightarrow R_{2} \\
3 R_{1}+R_{3} \rightarrow R_{3}
\end{aligned} \quad\left[\begin{array}{cccc}
1 & 3 & 4 & b_{1} \\
0 & 14 & 10 & b_{2}+4 b_{1} \\
0 & 7 & 5 & b_{3}+3 b_{1}
\end{array}\right],
$$

The lest column is not a pivot column only if

$$
b_{2}-2 b_{1}-2 b_{3}=0
$$

The vectors in \mathbb{R}^{3} such that $\vec{A} \vec{x}=\vec{b}$ is solvable satisfy

$$
-2 b_{1}+b_{2}-2 b_{3}=0
$$

Note, this can be written as

$$
b_{1}=\frac{1}{2} b_{2}-b_{3}
$$

b_{2}, b_{3} free

$$
\begin{aligned}
\vec{b} & =\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} b_{2}-b_{3} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} b_{2} \\
b_{2} \\
0
\end{array}\right]+\left[\begin{array}{c}
-b_{3} \\
0 \\
b_{3}
\end{array}\right] \\
& =b_{2}\left[\begin{array}{c}
\frac{1}{2} \\
1 \\
0
\end{array}\right]+b_{3}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

\vec{b} would have to be in $\operatorname{spon}\left\{\left[\begin{array}{c}\frac{1}{2} \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]\right\}$.

Theorem (first in a string of equivalency theorems)

Let A be an $m \times n$ matrix. Then the following are logically equivalent (i.e. they are either all true or are all false).
(a) For each \mathbf{b} in \mathbb{R}^{m}, the equation $A \mathbf{x}=\mathbf{b}$ has a solution.
(b) Each \mathbf{b} in \mathbb{R}^{m} is a linear combination of the columns of A.
(c) The columns of A span \mathbb{R}^{m}.
(d) A has a pivot position in every row.
(Note that statement (d) is about the coefficient matrix A, not about an augmented matrix $\left[\begin{array}{ll}A & b\end{array}\right]$.)

