January 25 Math 3260 sec. 55 Spring 2018

Section 1.3: Vector Equations

Recall that we had defined vectors as matrices consisting of a single column. We denote the collection of such vectors with *n* real components by \mathbb{R}^n . That is, a vector **u** in \mathbb{R}^n has the form

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$

ヘロン 人間 とくほ とくほう

January 24, 2018

1/47

where each u_i is a real number called a component (or entry).

Matrices Expressed in Terms of Columns

Given a collection of vectors $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ in \mathbb{R}^m , we can use the notation

$$[\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n]$$

to denote the $m \times n$ matrix whose columns are these vectors. That is

$$[\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n] = \begin{bmatrix} a_{11} \ a_{12} \ \cdots \ a_{1n} \\ a_{21} \ a_{22} \ \cdots \ a_{2n} \\ \vdots \ \vdots \ \vdots \ \vdots \\ a_{m1} \ a_{m2} \ \cdots \ a_{mn} \end{bmatrix}.$$

January 24, 2018 2 / 47

イロト 不得 トイヨト イヨト 二日

Algebraic Operations

For vectors \mathbf{u} and \mathbf{v} and scalar c, we defined the two operations

Scalar Multiplication: *cu* is the vector with components *cu*_i.

Vector Addition: $\mathbf{u} + \mathbf{v}$ is the vector with components $u_i + v_i$.

We also define equivalence and the zero vector

Vector Equivalence: $\mathbf{u} = \mathbf{v}$ if and only if $u_i = v_i$ for each i = 1, ..., n.

Zero Vector: Denoted by **0** or $\vec{0}$, this vector has each component equal to zero.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - つくで

Algebraic Properties on \mathbb{R}^n

For every **u**, **v**, and **w** in \mathbb{R}^n and scalars *c* and d^1

(i)
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
 (v) $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
(ii) $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ (vi) $(c + d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
(iii) $\mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u} = \mathbf{u}$ (vii) $c(d\mathbf{u}) = d(c\mathbf{u}) = (cd)\mathbf{u}$
(iv) $\mathbf{u} + (-\mathbf{u}) = -\mathbf{u} + \mathbf{u} = \mathbf{0}$ (viii) $1\mathbf{u} = \mathbf{u}$

¹The term $-\mathbf{u}$ denotes $(-1)\mathbf{u}$.

January 24, 2018 4 / 47

Linear Combinations and Span

Definition: Given a set of vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ in \mathbb{R}^n , a **linear combination** of these vectors is a vector of the form

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_p\mathbf{v}_p$$

where the scalars c_i are often called *weights*.

Definition: For a given set of vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ in \mathbb{R}^n , the **span** of this set, denoted

$$\mathsf{Span}\{\mathbf{v}_1,\ldots,\mathbf{v}_p\},\$$

is the subset of \mathbb{R}^n consisting of all possible linear combinations (i.e. allowing the weights to vary over all reals).

Vector and Matrix Equations

For a given set of vectors $\mathbf{a}_1, \ldots, \mathbf{a}_n$, the vector equation (in variables x_i)

$$x_1 a_1 + x_2 a_2 + \cdots + x_n a_n = b$$

has the same solution set as the linear system whose augmented matrix is

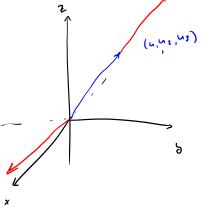
$$[\mathbf{a}_1 \quad \mathbf{a}_2 \quad \cdots \quad \mathbf{a}_n \quad \mathbf{b}]. \tag{1}$$

If this system is consistent, then we can say that the vector **b** is in $\text{Span}\{\mathbf{a}_1, \dots, \mathbf{a}_n\}$.

Give a geometric description of the subset of \mathbb{R}^2 given by Span $\left\{ \begin{bmatrix} 1\\1 \end{bmatrix} \right\}$. Each vector in Spon $\left\{ \begin{bmatrix} 1\\1 \end{bmatrix} \right\}$ has the form X = c [] = [c]. for some number C. =(0,0) Geomhrically, this is the 45° line through January 24, 2018 7/47

Span $\{\mathbf{u}\}$ in \mathbb{R}^3

If **u** is any nonzero vector in \mathbb{R}^3 , then Span{**u**} is a line through the origin parallel to **u**.



Span $\{u, v\}$ in \mathbb{R}^3

If **u** and **v** are nonzero, and nonparallel vectors in \mathbb{R}^3 , then Span $\{\mathbf{u}, \mathbf{v}\}$ is a plane containing the origin parallel to both vectors.

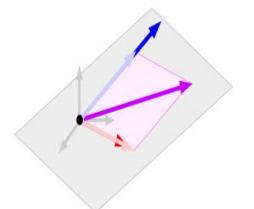


Figure: The red and blue vectors are \mathbf{u} and \mathbf{v} . The plane is the collection of all possible linear combinations. (A purple representative is shown.)

Let $\mathbf{u} = (1, 1)$ and $\mathbf{v} = (0, 2)$ in \mathbb{R}^2 . Show that for every pair of real numbers *a* and *b*, that (a, b) is in Span $\{\mathbf{u}, \mathbf{v}\}$.

We want to show that $X_1 \overline{U} + X_2 \overline{V} = \begin{bmatrix} a \\ b \end{bmatrix}$ is always consistent (independent of a and b). This vector equation is the same as the linear system with augmented matrix [ŭ v [2]] Lite reduce to = 1 0 A 1 Z b rref

イロン イボン イヨン 一日

$$-R_{1} + R_{2} \Rightarrow R_{2} \begin{bmatrix} 1 & 0 & a \\ 0 & 2 & b - a \end{bmatrix}$$

$$\frac{1}{2}R_{2} \Rightarrow R_{2} \begin{bmatrix} 1 & 0 & a \\ 0 & 1 & \frac{b - a}{2} \end{bmatrix} \text{ rote}, \quad \text{is pinet}$$

$$(0 & 1 & \frac{b - a}{2} \end{bmatrix} \text{ rote}, \quad \text{of prove power.}$$

Hence the system is always consistent
telling us that
$$\begin{bmatrix} a \\ b \end{bmatrix}$$
 is in Spar $\{\vec{u}, \vec{v}\}\$ for
any $\begin{bmatrix} a \\ b \end{bmatrix}$.
In fact, $\begin{bmatrix} a \\ b \end{bmatrix} = a\vec{u} + \left(\frac{b-a}{2}\right)\vec{v}$.

January 24, 2018 11 / 47

◆□ → ◆□ → ◆三 → ◆三 → ◆◎ → ◆○ →

Section 1.4: The Matrix Equation $A\mathbf{x} = \mathbf{b}$.

Definition Let A be an $m \times n$ matrix whose columns are the vectors $\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n$ (each in \mathbb{R}^m), and let **x** be a vector in \mathbb{R}^n . Then the product of A and x, denoted by

Ax

note the product requires in X note the product endries in X is the linear combination of the columns of A whose weights are the corresponding entries in **x**. That is

$$A\mathbf{x} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n$$

January 24, 2018

12/47

(Note that the result is a vector in $\mathbb{R}^{m!}$)

Find the product Ax. Simplify to the extent possible.

$$A = \begin{bmatrix} 1 & 0 & -3 \\ -2 & -1 & 4 \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$$

$$3 \quad (alu \ math{mathematics}) \quad 3 \quad arbit(c)$$

$$A\vec{x} = x, \vec{a}, + x_{2}\vec{a}_{2} + x_{3}\vec{a}_{3}$$

= $a\left[\binom{1}{-2} + 1\left[\binom{0}{-1} + \binom{-1}{-1}\left[\frac{-3}{-4}\right] = \binom{2}{-4} + \binom{0}{-1} + \binom{3}{-4}\right]$
= $\binom{2+0+3}{-4-1-4} = \binom{5}{-9}$

January 24, 2018 13 / 47

Find the product Ax. Simplify to the extent possible.

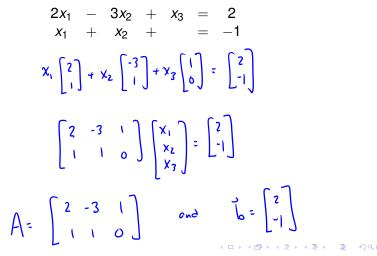
$$A = \begin{bmatrix} 2 & 4 \\ -1 & 1 \\ 0 & 3 \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$$

$$2 \text{ columns}$$

$$A \stackrel{?}{\mathbf{x}} = \mathbf{x}, \quad \vec{a}, + \mathbf{x}, \quad \vec{a}_{2} = -3 \quad \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} + 2 \begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} -6 \\ 3 \\ 0 \end{bmatrix} + \begin{bmatrix} 8 \\ 2 \\ 6 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Write the linear system as a vector equation and then as a matrix equation of the form $A\mathbf{x} = \mathbf{b}$.



Note that the matrix A is the
coefficient matrix for the
linear system. The vector b
is a column for the right hand side, and
$$\vec{X} = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$
 is a variable vector.
The angmented matrix for the linear
system is $\begin{bmatrix} A & b \end{bmatrix}$.

January 24, 2018 16 / 47

◆□ → ◆□ → ◆三 → ◆三 → ◆◎ → ◆○ →

Theorem

If *A* is the $m \times n$ matrix whose columns are the vectors $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$, and **b** is in \mathbb{R}^m , then the matrix equation

$$A\mathbf{x} = \mathbf{b}$$

has the same solution set as the vector equation

$$x_1a_1 + x_2a_2 + \cdots + x_na_n = b$$

which, in turn, has the same solution set as the linear system of equations whose augmented matrix is

$$[\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n \ \mathbf{b}].$$

January 24, 2018 17 / 47

The equation $A\mathbf{x} = \mathbf{b}$ has a solution if and only if **b** is a linear combination of the columns of *A*.

In other words, the corresponding linear system is consistent if and only if **b** is in Span{ $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n$ }.

Characterize the set of all vectors $\mathbf{b} = (b_1, b_2, b_3)$ such that $A\mathbf{x} = \mathbf{b}$ has a solution where

$$A = \begin{bmatrix} 1 & 3 & 4 \\ -4 & 2 & -6 \\ -3 & -2 & -7 \end{bmatrix}.$$

AX=6 has a solution if the augmented matrix [A 6] corresponds to a consistent system.

$$\begin{bmatrix} 1 & 3 & 4 & b_1 \\ -4 & 2 & -6 & b_2 \\ -3 & -2 & -7 & b_7 \end{bmatrix}$$

We need to determine conditions under which the left column is not a pivot column.

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

 $\frac{4R_1 + R_2 \rightarrow R_2}{3R_1 + R_3 \rightarrow R_3}$

 $R_2 \leftrightarrow R_3$

-2K2+R3->R3

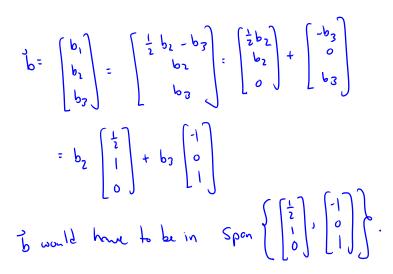
The last column is not a pivot column
only if
$$b_2 - 2b_1 - 2b_3 = 0$$

The vectors in R³ such that $A\vec{x} = \vec{b}$ is
solvable satisfy
 $-2b_1 + b_2 - 2b_3 = 0$.
Note, this can be written as
 $b_1 = \frac{1}{2}b_2 - b_3$

January 24, 2018 21 / 47

◆□ → ◆□ → ◆三 → ◆三 → ◆◎ → ◆○ →

bz bz free



January 24, 2018 22 / 47

э

イロト イ理ト イヨト イヨト

Theorem (first in a string of equivalency theorems)

Let A be an $m \times n$ matrix. Then the following are logically equivalent (i.e. they are either all true or are all false).

(a) For each **b** in \mathbb{R}^m , the equation $A\mathbf{x} = \mathbf{b}$ has a solution.

(b) Each **b** in \mathbb{R}^m is a linear combination of the columns of A.

(c) The columns of A span \mathbb{R}^m .

(d) A has a pivot position in every row.

(Note that statement (d) is about the *coefficient* matrix A, not about an augmented matrix [A **b**].)

> January 24, 2018

23/47