Jan. 26 Math 2254H sec 015H Spring 2015

Section 7.3 Trigonometric Substitution

Compare the two integrals:

$$
\int x \sqrt{1-x^{2}} d x, \text { and } \int \sqrt{1-x^{2}} d x
$$

Using some simple geometry

$$
y=\sqrt{1-x^{2}}
$$

$\int_{-1}^{1} \sqrt{1-x^{2}} d x=\frac{\pi}{2}$.

It's clear from geometry, but not directly from any algebra where a factor of π comes from!

A different sort of substitution

$$
\int \sqrt{1-x^{2}} d x
$$

Consider the new variable θ defined by $-\frac{\pi}{2}<\theta<\frac{\pi}{2}$ and

$$
x=\sin \theta, \quad \text { so that } \quad d x=\cos \theta d \theta
$$

$$
\begin{aligned}
\sqrt{1-x^{2}} & =\sqrt{1-\sin ^{2} \theta}=\sqrt{\cos ^{2} \theta}=|\cos \theta| \\
& =\cos \theta \text { for }-\pi / 2<\theta<\pi / 2
\end{aligned}
$$

$$
\begin{aligned}
& \int \sqrt{1-x^{2}} d x=\int \cos \theta \cos \theta d \theta \\
&=\int \cos ^{2} \theta d \theta \\
&=\int\left(\frac{1}{2}+\frac{1}{2} \cos (2 \theta)\right) d \theta \\
&=\frac{1}{2} \theta+\frac{1}{4} \sin (2 \theta)+C \\
&=\frac{1}{2} \theta+\frac{1}{2} \sin \theta \cos \theta+C \\
&=\frac{1}{2} \sin ^{-1} x+\frac{1}{2} x \sqrt{1-x^{2}}+C
\end{aligned}
$$

