January 26 Math 2306 sec 58 Spring 2016

Section 4: First Order Equations: Linear

A first order linear equation has the form

a1(0) % + a0(x)y = g(x).

If g(x) = 0 the equation is called homogeneous. Otherwise it is called
nonhomogeneous.

Provided a1 (x) # 0 on the interval / of definition of a solution, we can

write the standard form of the equation ?(x)__ Qo / o
d
Y Py -t Foa= 8a,

We'll be interested in equations (and intervals /) for which P and f are

continuous on /.
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Solutions (the General Solution)

dy

ax

It turns out the solution will always have a basic form of y = y. + yp
where

+ P(x)y = f(x).

» y. is called the complementary solution and would solve the
problem
22(/ + P(x)y =0
(called the associated homogeneous equation), and
> Jp is called the particular solution, and is heavily influenced by
the function f(x).

The cool thing is that our solution method will get both parts in one
process—we won't get this benefit with higher order equations!
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Derivation of Solution via Integrating Factor
Solve the equation in standard form

dy
ax + P(x)y = f(x)
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General Solution of First Order Linear ODE

» Put the equation in standard form y’ + P(x)y = f(x), and correctly
identify the function P(x).

» Obtain the integrating factor (x) = exp (| P(x) dx).
» Multiply both sides of the equation (in standard form) by the

integrating factor 1. The left hand side will always collapse into
the derivative of a product

& 1)) = nx)10).

» Integrate both sides, and solve for y.

yx) = —— / H()F(x) dx = e I Px)ox ( / el P9 (x) ax + c)

January 21, 2016 9/54



Solve the ODE
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Solve the IVP
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Steady and Transient States

For some linear equations, the term y, decays as x (or t) grows. For
example

dy i —X . o 3 2 _x
aJFY—Sxe has solution y = 5X + Ce ™.

Here, yp= gxz and y, = Ce™*.

jl"‘ -X _
Nole Y po Ce =0
Such a decaying complementary solution is called a transient state.

The corresponding particular solution is called a steady state.
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Section 5: First Order Equations Models and
Applications
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Figure: Mathematical Models give Rise to Differential Equations =
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Population Dynamics

A population of dwarf rabbits grows at a rate proportional to the current
population. In 2011, there were 58 rabbits. In 2012, the population was

up to 89 rabbits. Estimate the number of rabbits expected in the
population in 2021.
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