January 26 Math 2306 sec 58 Spring 2016

Section 4: First Order Equations: Linear
A first order linear equation has the form

$$
a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

If $g(x)=0$ the equation is called homogeneous. Otherwise it is called nonhomogeneous.

Provided $a_{1}(x) \neq 0$ on the interval / of definition of a solution, we can write the standard form of the equation

$$
\frac{d y}{d x}+P(x) y=f(x)
$$

$$
\begin{align*}
& P(x)=a_{0} / a_{1} \\
& f(x)=s / a_{1}
\end{align*}
$$

We'll be interested in equations (and intervals I) for which P and f are continuous on I.

Solutions (the General Solution)

$$
\frac{d y}{d x}+P(x) y=f(x)
$$

It turns out the solution will always have a basic form of $y=y_{c}+y_{p}$ where

- y_{c} is called the complementary solution and would solve the problem

$$
\frac{d y}{d x}+P(x) y=0
$$

(called the associated homogeneous equation), and

- y_{p} is called the particular solution, and is heavily influenced by the function $f(x)$.

The cool thing is that our solution method will get both parts in one process-we won't get this benefit with higher order equations!

Motivating Example

$$
x^{2} \frac{d y}{d x}+2 x y=e^{x}
$$

The egn. isnit in standard form. But well leave it as. is.

Note: the left is a product rule.

$$
\frac{d}{d x}\left(x^{2} y\right)=x^{2} \frac{d y}{d x}+2 x y
$$

Hence our equation is actually

$$
\frac{d}{d x}\left(x^{2} y\right)=e^{x}
$$

We will undo the derivative on the left.
$\int \frac{d}{d x}\left(x^{2} y\right) d x=\int e^{x} d x \quad \leftarrow$ integrate

$$
x^{2} y=e^{x}+C
$$

Divide by x^{2} to get our solution y.

$$
y=\frac{e^{x}+C}{x}
$$

Derivation of Solution via Integrating Factor
Solve the equation in standard form

$$
\frac{d y}{d x}+P(x) y=f(x)
$$

Wed like to force the left side to be a product rule. Weill multiply by some function $\mu(x)$ to achieve this.

Multiply, by $\mu(x)$

$$
\mu(x) \frac{d y}{d x}+p(x) \mu(x) y=\mu(x) f(x)
$$

Note: $\frac{d}{d x}[\mu(x) y]=\mu(x) \frac{d y}{d x}+\frac{d \mu}{d x} y$

Compare the left side of the egn. with the product rule

$$
\mu \frac{d y}{d x}+P(x) \mu y=\mu \frac{d y}{d x}+\frac{d \mu}{d x} y
$$

This requires $\quad P(x) \mu=\frac{d \mu}{d x}$

$$
\text { i.e. } \quad \frac{d \mu}{d x}=P(x) \mu \quad \text { a sepporablion! }
$$

Solve

$$
\begin{aligned}
& \text { Solve } \frac{1}{\mu} \frac{d \mu}{d x}=P(x) \Rightarrow \frac{1}{\mu} d \mu=P(x) d x \\
& \int \frac{1}{\mu} d \mu=\int P(x) d x \Rightarrow \ln \mu=\int P(x) d x
\end{aligned}
$$

called an
Exponentiate to get $\mu=e^{\int p(x) d y}$ integrating factor

Now, return to the ODE

$$
\begin{aligned}
& \mu \frac{d y}{d x}+\mu P y=\mu(x) f(x) \\
& \frac{d}{d x}[\mu y]=\mu(x) f(x)
\end{aligned}
$$

January 21, $2016 \quad 7 / 54$

$$
\begin{array}{r}
\int \frac{d}{d x}[\mu y] d x=\int \mu(x) f(x) d x \\
\mu y=\int \mu(x) f(x) d x+C
\end{array}
$$

Solve for y

$$
y=\mu^{-1} \int \mu(x) f(x) d x+C \mu^{-1}
$$

General Solution of First Order Linear ODE

- Put the equation in standard form $y^{\prime}+P(x) y=f(x)$, and correctly identify the function $P(x)$.
- Obtain the integrating factor $\mu(x)=\exp \left(\int P(x) d x\right)$.
- Multiply both sides of the equation (in standard form) by the integrating factor μ. The left hand side will always collapse into the derivative of a product

$$
\frac{d}{d x}[\mu(x) y]=\mu(x) f(x)
$$

- Integrate both sides, and solve for y.

$$
y(x)=\frac{1}{\mu(x)} \int \mu(x) f(x) d x=e^{-\int P(x) d x}\left(\int e^{\int P(x) d x} f(x) d x+C\right)
$$

Solve the ODE
Standard form

$$
\begin{array}{ll}
x^{2} \frac{d y}{d x}+2 x y=e^{x} \quad \Rightarrow \quad \frac{d y}{d x}+\frac{2}{x} y=\frac{e^{x}}{x^{2}} \\
P(x)=\frac{2}{x} \quad \mu=e^{\int P(x) d x} \quad \int P(x) d x=\int \frac{2}{x} d x=2 \ln |x|=\ln x^{2} \\
\mu=e^{\ln x^{2}}=x^{2} & * \ln x=\ln x^{r}
\end{array}
$$

Malt. eqn by μ

$$
x^{2} \frac{d y}{d x}+2 x y=\frac{e^{x}}{x^{2}} \cdot x^{2}
$$

$$
\begin{aligned}
\frac{d}{d x}\left[\begin{array}{ll}
x^{2} y
\end{array}\right] & =e^{x} \\
\int \frac{d}{d x}\left[x^{2} y\right] d x & =\int e^{x} d x \\
x^{2} y & =e^{x}+C
\end{aligned}
$$

The solution to the ODE is then

$$
y=\frac{e^{x}+c}{x^{2}}
$$

Solve the ODE The ODE is in Standard form.

$$
\begin{gathered}
\frac{d y}{d x}+y=3 x e^{-x} \quad P(x)=1 \quad \int P(x) d x=\int d x=x \\
\mu=e^{\int \rho(x) d x}=e^{x}
\end{gathered}
$$

Malt. by μ

$$
\begin{aligned}
& e^{x} \frac{d y}{d x}+e^{x} y=3 x e^{-x} \cdot e^{x} \\
& \frac{d}{d x}\left[e^{x} y\right]=3 x
\end{aligned}
$$

$$
\begin{gathered}
\int \frac{d}{d x}\left[e^{x} y\right] d x=\int 3 x d x \\
e^{x} y=3 \frac{x^{2}}{2}+C \\
y=\frac{\frac{3}{2} x^{2}+C}{e^{x}}=\frac{3}{2} x^{2} e^{-x}+C e^{-x}
\end{gathered}
$$

The Solution is $y=\frac{3}{2} x^{2} e^{-x}+C e^{-x}$.

Since $x_{0}=1>0$, we con $x \frac{d y}{d x}-y=2 x^{2}, \quad y(1)=5$ assume that $x>0$.

Put ODE in Standard form

$$
\begin{aligned}
\frac{d y}{d x}-\frac{1}{x} y=\frac{2 x^{2}}{x} & =2 x \\
P(x)=\frac{-1}{x} \quad \int P(x) d x & =\int \frac{-1}{x} d x=-\ln |x|=\ln x^{-1} \\
\mu & =e^{\int P(x) d x}=e^{\ln x^{-1}}=x^{-1}
\end{aligned}
$$

Mult by μ

$$
\begin{aligned}
& x^{-1} \frac{d y}{d x}-x^{-1} \cdot \frac{1}{x} y=2 x \cdot x^{-1} \\
& \frac{d}{d x}\left[x^{-1} y\right]=2
\end{aligned}
$$

$$
\int \frac{d}{d x}\left[x^{-1} y\right] d x=\int 2 d x
$$

$$
x^{-1} y=2 x+C
$$

$$
y=\frac{2 x+C}{x^{-1}}=(2 x+C) x=2 x^{2}+C x
$$

$$
y=2 x^{2}+C x
$$

Apply $y(1)=5 \quad y(1)=2 \cdot 1^{2}+c \cdot 1=5 \Rightarrow c=3$

The solution to the IV P is

$$
y=2 x^{2}+3 x
$$

Solve the IVP

$$
\frac{d y}{d t}+\frac{4}{t} y=\frac{e^{t}}{t^{3}}, \quad y(-1)=0
$$

The ODE is in standard form, $P(t)=\frac{4}{t}$

$$
\begin{array}{ll}
\int \rho(t) d t=\int \frac{4}{t} d t=4 \ln |t|=\ln t^{4} & |t|=-t \quad \text { for } t^{20} \\
\mu=e^{\int \rho(t) d t}=e^{\ln t^{4}}=t^{4} & \text { e.g. } \\
t^{4} \frac{d y}{d t}+\frac{4}{t} t^{4} y=\frac{e^{t}}{t^{3}} t^{4} & \text { sen } 1 t)^{5}=(-t)^{5}
\end{array}
$$

$$
\begin{aligned}
\frac{d}{d t}\left[t^{4} y\right] & =t e^{t} \\
\int \frac{d}{d t}\left[t^{4} y\right] d t & =\int t e^{t} d t \\
t^{4} y & =t e^{t}-\int e^{t} d t \\
& =t e^{t}-e^{t}+C \\
\Rightarrow y & =\frac{t e^{t}-e^{t}+C}{t^{4}}
\end{aligned}
$$

Use parts

$$
u=t \quad d u=d t
$$

$$
v=e^{t} d v=e^{t} d t
$$

Apply $y(-1)=0$

$$
\begin{aligned}
& y(-1)=\frac{-1 e^{-1}-e^{-1}+C}{(-1)^{4}}=-2 e^{-1}+C=0 \\
& \Rightarrow c=2 e^{-1}
\end{aligned}
$$

The solution to the IV P is

$$
y=\frac{t e^{t}-e^{t}+2 e^{-1}}{t^{4}}
$$

Steady and Transient States

For some linear equations, the term y_{c} decays as x (or t) grows. For example

$$
\frac{d y}{d x}+y=3 x e^{-x} \text { has solution } y=\frac{3}{2} x^{2}+C e^{-x} .
$$

$$
\text { Here, } y_{p}=\frac{3}{2} x^{2} \quad \text { and } y_{c}=C e^{-x} \text {. }
$$

$$
\text { Note } \lim _{x \rightarrow \infty} C e^{-x}=0
$$

Such a decaying complementary solution is called a transient state.
The corresponding particular solution is called a steady state.

Section 5: First Order Equations Models and Applications

Figure: Mathematical Models give Rise to Differential Equations

Population Dynamics
A population of dwarf rabbits grows at a rate proportional to the current population. In 2011, there were 58 rabbits. In 2012, the population was up to 89 rabbits. Estimate the number of rabbits expected in the population in 2021.

Let $P(t)$ be the population (or population density) of rabbits at time t.

The rote of change of P is $\frac{d P}{d t}$
The first sentence says $\frac{d P}{d t} \propto P$
ie. $\quad \frac{d P}{d t}=k P$ for some constant k.

This is an ODE, If we take t in years and let $t=0$ in 2011 . Our statement gives

$$
P(0)=58 \quad \text { and } P(1)=89
$$

Well finish this on Feb. 2 .

