January 26 Math 2335 sec 51 Spring 2016

Section 2.2: Errors (definitions, sources, and examples)

Definition: The error in a computed quantity is

$$
\text { Error }=\text { true value }- \text { approximated value. }
$$

The relative error in a computed quantity is

$$
\text { Relative Error }=\frac{\text { true value }-\quad \text { approximated value }}{\text { true value }} .
$$

Notation

Suppose we wish to compute a quantity x. We will use the following notation: let
$x_{T}-$ denote the true value
$x_{A}-$ denote the approximated value
the errors are denoted

$$
\begin{aligned}
\operatorname{Err}\left(x_{A}\right) & =x_{T}-x_{A} \\
\operatorname{Rel}\left(x_{A}\right) & =\frac{x_{T}-x_{A}}{x_{T}}=\frac{\operatorname{Err}\left(x_{A}\right)}{x_{T}}
\end{aligned}
$$

Example
Suppose we take the true value of π to be $x_{T}=\pi=3.14159265$.
Determine the error and the relative error when

$$
x_{A}=\frac{22}{7}
$$

is used to approximate π.

$$
\begin{aligned}
& \operatorname{Err}\left(\frac{22}{7}\right)=3.14159265-\frac{22}{7} \doteq-0.00126449 \\
& \operatorname{Rel}\left(\frac{22}{7}\right)=\frac{3.14159265-\frac{22}{7}}{3.14159265}=-0.00040250
\end{aligned}
$$

Example
Suppose we take the true value of $\ln (3)$ to be $x_{T}=\ln (3)=1.0986123$.
Determine the error and the relative error when

$$
x_{A}=\frac{78}{71}
$$

is used to approximate $\ln (3)$.

$$
\begin{aligned}
& \operatorname{Err}\left(\frac{78}{71}\right)=1.0986123-\frac{78}{71}=0.00002075 \\
& \operatorname{Rel}\left(\frac{78}{71}\right)=\frac{\operatorname{Err}_{r}\left(\frac{78}{71}\right)}{1.0986123}=0.00001889
\end{aligned}
$$

Example

We used $p_{1}(x)$ for $f(x)=\sqrt{x}$ centered at $a=4$ to approximate $\sqrt{4.1}$. Identify x_{T}, x_{A}, and find the error and relative error.

$$
\begin{aligned}
& X_{T}=\sqrt{4.1} \quad \text { (from Jon.19) } \quad X_{A}=p_{1}(4.1)=2.025 \\
& \operatorname{Err}(2.025)=\sqrt{4.1}-2.025=-0.00015430 \\
& \operatorname{Rel}(2.025)=\frac{\operatorname{Err}(2.025)}{\sqrt{4.1}}=-0.00007620
\end{aligned}
$$

Why consider relative error...?

Relative error has more intrinsic meaning. It is also a unit-less measure. Consider the following scenarios:

Example 1: A colony of bacteria is known to reproduce with a doubling time of 5 hours. The doubling time recorded in the laboratory is 298 minutes (4 hrs 58 min). The error and relative error are

$$
\operatorname{Err}(298)=2 m i n, \quad \text { and } \quad \operatorname{Rel}(298)=0.0066 \overline{6} .
$$

Example 2: It takes 6 min .40 sec . for half a sample of $\mathrm{N}_{2} \mathrm{O}_{5}$ to decompose (into $\mathrm{NO}_{2}+\mathrm{O}_{2}$). The time recorded in the lab is 280 sec . The error and relative error are

$$
\operatorname{Err}(280)=2 \mathrm{~min}, \quad \text { and } \quad \operatorname{Rel}(280)=0.3 .
$$

Significant Digits

An idea related to relative error is significant digits. An informal definition:

Informal Definition: For an approximation x_{A}, the number of its leading digits (count from left to right starting with the first nonzero digit) that are correct relative to the corresponding digits of the true value x_{T} is called the number of significant digits in x_{A}.

Examples: (a) $x_{A}=\frac{22}{7}=3.142857$ has three significant digits as an approximation to π
(b) $x_{A}=34.1456$ has two significant digits as an approximation to $x_{T}=34.2355$
(c) $x_{A}=2$ has one significant digit as an approximation to $x_{T}=e$.

Sources of Error

- Modeling errors (simplifications made)
- Measurement errors (finite precision instruments and human error)
- Machine errors (rounding/truncating/change of base)
- Mathematical approximation (e.g. using p_{n} to approximate f)

Loss of Significance

Loss of significant digits can occur in machine computations when number that are very close are subtracted. Consider the following example:

We wish to compute $\sqrt{101}-\sqrt{100}$ on a six digit calculator.

$$
\sqrt{100}=10.0000 \text { and } \sqrt{101}=10.0499
$$

to six digits of accuracy. The difference calculated is

$$
x_{A}=\sqrt{101}-\sqrt{100} \doteq 0.0499000
$$

The true value to six digits is $x_{T}=0.0498756$. So x_{A} only has two significant digits!

Strategies to Avoid Loss of Significance

A general rule of thumb is to avoid subtraction!

How this can be done depends on the problem. Let's consider several examples.

Example: Using Algebra
Let $f(x)=\sqrt{x+1}-\sqrt{x}$. For x large, find an alternative expression for $f(x)$ that avoids subtraction.

$$
\sqrt{x+1}+\sqrt{x}
$$

$$
\begin{aligned}
f(x) & =(\sqrt{x+1}-\sqrt{x}) \cdot\left(\frac{\sqrt{x+1}+\sqrt{x}}{\sqrt{x+1}+\sqrt{x}}\right) \quad \begin{array}{l}
\text { is the } \\
\text { conjugate } \\
\text { expression }
\end{array} \\
& =\frac{x+1-x}{\sqrt{x+1}+\sqrt{x}} \\
& =\frac{1}{\sqrt{x+1}+\sqrt{x}}
\end{aligned}
$$

$$
f(x)=\frac{1}{\sqrt{x+1}+\sqrt{x}}
$$

This expression requires no subtraction.

Example: Using Identities

Let

$$
g(x)=\frac{1-\cos x}{x^{2}}
$$

Several values of g for x close to zero were computed on a 10 digit calculator as shown in the table.

x	computed	true value
0.1	0.4995834700	0.4995834722
0.01	0.4999960000	0.4999958333
0.001	0.5000000000	0.4999999583
0.0001	0.5000000000	0.4999999996
0.00001	0.0	0.5000000000

Example Continued...
Use the identity $\sin ^{2} \theta=\frac{1}{2}-\frac{1}{2} \cos 2 \theta$ to express $g(x)$ in a way that avoids subtraction.

$$
\begin{aligned}
& g(x)=\frac{1-\cos x}{x^{2}} \\
& \text { From } \sin ^{2} \theta=\frac{1}{2}-\frac{1}{2} \cos 2 \theta \\
& 2 \sin ^{2} \theta=1-\cos 2 \theta
\end{aligned}
$$

Take $2 \theta=x \Rightarrow \theta=\frac{x}{2}$
So $1-\cos x=2 \sin ^{2} \frac{x}{2}$

$$
g(x)=\frac{2 \sin ^{2}\left(\frac{x}{2}\right)}{x^{2}}
$$

Heres on equivdent express that avoids Subtraction.

A second approach
Again consider $g(x)=\frac{1-\cos x}{x^{2}}$. Use the Taylor polynomial with remainder

$$
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+R_{4}(x), \quad \text { where } \quad R_{4}(x)=\frac{-x^{6}}{6!} \cos \left(c_{x}\right)
$$

to find a Taylor polynomial approximation to g, and bound the error for $|x| \leq 0.1$.

$$
\begin{aligned}
g(x)=\frac{1-\cos x}{x^{2}} & =\frac{1-\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!} \cos \left(c_{x}\right)\right)}{x^{2}} \\
& =\frac{\frac{x^{2}}{2!}-\frac{x^{4}}{4!}+\frac{x^{6}}{6!} \cos \left(c_{x}\right)}{x^{2}} \\
& =\frac{1}{2}-\frac{x^{2}}{24}+\frac{x^{4}}{720} \cos \left(c_{x}\right)
\end{aligned}
$$

For sore C_{x} between $z^{e r o}$ and

January 25, $2016 \quad 17 / 55$

Our remainder for g is $R_{2}(x)=\frac{x^{4}}{720} \cos \left(c_{x}\right)$

For $\quad|x| \leq 0.1, \quad|x|^{4} \leq(0.1)^{4}=10^{-4}$
For $\quad\left|c_{x}\right| \leqslant 0.1 \quad\left|\cos \left(c_{x}\right)\right| \leqslant 1$

$$
\begin{aligned}
\left|R_{2}(x)\right|=\left|\frac{x^{4}}{720} \cos (c x)\right| & \leqslant \frac{10^{-4}}{720} \cdot 1 \\
& =0.00000014
\end{aligned}
$$

