January 27 MATH 1112 sec. 54 Spring 2020 Quick Review of Inverse Functions

Suppose we have the function y = f(x) where $f(x) = x^3 - 1$. We can say

when the input x = 2, the output y = 7.

We can also say it the other way around

when the output y = 7, the input x = 2.

It doesn't always work so nicely. Consider the example

$$f(x)=x^2.$$

When x = 2, we have f(x) = 4. But if f(x) = 4, we can't be certain about what x is!

One to One

Definition: A function *f* is **one to one** if different inputs have different outputs. That is *f* is one to one provided

$$a \neq b$$
 implies $f(a) \neq f(b)$.

Equivalently, f is a one to one function provided

$$f(a) = f(b)$$
 implies $a = b$.

Horizontal Line Test: A function f(x) is one to one if and only if the graph of y = f(x) is intersected at most one time by every horizontal line.

Horizontal Line Test

Figure: Left: A one to one function. Right: A function that is not one to one.

Question

Which of the following is the graph of a one to one function? (Hint: Horizontal Line Test)

Inverse Function

Theorem: If *f* is a one to one function with domain *D* and range *R*, then its inverse f^{-1} is a function with domain *R* and range *D*. Moreover, the inverse function is defined by

$$f^{-1}(x) = y$$
 if and only if $f(y) = x$.

Note that inverse functions *swap* domains and ranges, inputs and outputs.

Question

Suppose *f* is a one-to-one function.

If the graph of y = f(x) passes through the points (2, 4), then which of the following **must** be true?

(a)
$$f^{-1}(2) = 4$$

(b) $f^{-1}(\frac{1}{2}) = \frac{1}{4}$
(c) $f^{-1}(4) = 2$
(d) $f^{-1}(\frac{1}{4}) = \frac{1}{2}$

Characteristic Compositions:

If *f* is a one to one function with domain *D*, range *R*, and with inverse function f^{-1} , then

• for each x in D,
$$(f^{-1} \circ f)(x) = x$$
, and

► for each x in
$$R$$
, $(f \circ f^{-1})(x) = x$.

Graphs

If (a, b) is a point on the graph of a function, then (b, a) is a point on the graph of its inverse. So the graph of f^{-1} is obtained by reflecting the graph of f in the line y = x.

Restricting the Domain

Figure: If the domain of $y = x^2$ is restricted to $[0, \infty)$, the graph passes the horizontal line test. $f(x) = x^2$ for $x \ge 0$ has inverse function $f^{-1}(x) = \sqrt{x}$.