January 27 MATH 1112 sec. 54 Spring 2020

Quick Review of Inverse Functions

Suppose we have the function $y=f(x)$ where $f(x)=x^{3}-1$. We can say
when the input $x=2$, the output $y=7$.
We can also say it the other way around
when the output $y=7$, the input $x=2$.

It doesn't always work so nicely. Consider the example

$$
f(x)=x^{2} .
$$

When $x=2$, we have $f(x)=4$. But if $f(x)=4$, we can't be certain about what x is!

One to One

Definition: A function f is one to one if different inputs have different outputs. That is f is one to one provided

$$
a \neq b \quad \text { implies } \quad f(a) \neq f(b)
$$

Equivalently, f is a one to one function provided

$$
f(a)=f(b) \quad \text { implies } \quad a=b
$$

Horizontal Line Test: A function $f(x)$ is one to one if and only if the graph of $y=f(x)$ is intersected at most one time by every horizontal line.

Horizontal Line Test

Figure: Left: A one to one function. Right: A function that is not one to one.

Question

Which of the following is the graph of a one to one function? (Hint: Horizontal Line Test)

Inverse Function

Theorem: If f is a one to one function with domain D and range R, then its inverse f^{-1} is a function with domain R and range D.
Moreover, the inverse function is defined by

$$
f^{-1}(x)=y \quad \text { if and only if } \quad f(y)=x
$$

Note that inverse functions swap domains and ranges, inputs and outputs.

Question

Suppose f is a one-to-one function.
If the graph of $y=f(x)$ passes through the points $(2,4)$, then which of the following must be true?
(a) $f^{-1}(2)=4$
(b) $f^{-1}\left(\frac{1}{2}\right)=\frac{1}{4}$
(C) $f^{-1}(4)=2$
(d) $f^{-1}\left(\frac{1}{4}\right)=\frac{1}{2}$

Characteristic Compositions:

If f is a one to one function with domain D, range R, and with inverse function f^{-1}, then

- for each x in $D,\left(f^{-1} \circ f\right)(x)=x$, and
- for each x in $R,\left(f \circ f^{-1}\right)(x)=x$.

Graphs

If (a, b) is a point on the graph of a function, then (b, a) is a point on the graph of its inverse. So the graph of f^{-1} is obtained by reflecting the graph of f in the line $y=x$.

Restricting the Domain

Figure: If the domain of $y=x^{2}$ is restricted to $[0, \infty)$, the graph passes the horizontal line test. $f(x)=x^{2}$ for $x \geq 0$ has inverse function $f^{-1}(x)=\sqrt{x}$.

