Jan. 27 Math 2254H sec 015H Spring 2015

Section 7.3 Trigonometric Substitution

May be useful when we see terms in an integral that look like (a is a constant)

$$
\sqrt{a^{2}-x^{2}}, \quad \sqrt{x^{2}-a^{2}}, \text { or } \sqrt{a^{2}+x^{2}} .
$$

$$
\begin{aligned}
& C=\sqrt{A^{2}+B^{2}} \\
& A=\sqrt{C^{2}-B^{2}} \\
& B=\sqrt{C^{2}-A^{2}}
\end{aligned}
$$

Figure: Trig Substitution Motivated by the Pythagorean Theorem

Substitution for the form $\sqrt{a^{2}-x^{2}}$

$$
\begin{aligned}
& x=a \sin \theta \\
& d x=a \cos \theta d \theta \\
& \sqrt{a^{2}-x^{2}}=a \cos \theta
\end{aligned}
$$

Substitution for the form $\sqrt{x^{2}-a^{2}}$

Substitution for the form $\sqrt{a^{2}+x^{2}}$

$$
\begin{aligned}
& x=a \tan \theta \\
& d x=a \sec ^{2} \theta d \theta \\
& \sqrt{x^{2}+a^{2}}=a \sec \theta
\end{aligned}
$$

We'll assume that θ is in an appropriate interval-e.g. $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ for the substitution $x=a \tan \theta$

Evaluate The Integral
(a)

$$
\int \frac{d x}{1+x^{2}}=\int \frac{d x}{\left(\sqrt{1+x^{2}}\right)^{2}}
$$

$$
\begin{aligned}
& =\int \frac{\sec ^{2} \theta d \theta}{(\sec \theta)^{2}} \\
& =\int d \theta
\end{aligned}
$$

$$
\begin{gathered}
\tan \theta=\frac{x}{1} \\
x=\tan \theta \\
d x=\sec ^{2} \theta d \theta \\
\sqrt{1+x^{2}}=\sec \theta
\end{gathered}
$$

Not $\sqrt{1+x^{2}}=\sqrt{1+\tan ^{2} \theta}=\sqrt{\sec ^{2} \theta}$

$$
\begin{aligned}
& =\theta+C \\
& =\tan ^{-1} x+C
\end{aligned}
$$

Evaluate The Integral

$$
\text { (b) } \begin{aligned}
& \int \frac{\sqrt{16-x^{2}}}{x^{2}} d x \\
&= \int \frac{4 \cos \theta \cdot 4 \cos \theta d \theta}{(4 \sin \theta)^{2}} \\
&= \int \cot ^{2} \theta d \theta \\
&=\int \frac{\cos ^{2} \theta}{\sin ^{2} \theta} d \theta
\end{aligned}
$$

$$
\begin{gathered}
x=4 \sin \theta \\
d x=4 \cos \theta d \theta \\
\cos \theta=\frac{\sqrt{16-x^{2}}}{4} \\
4 \cos \theta=\sqrt{16-x^{2}}
\end{gathered}
$$

$$
\begin{aligned}
& =\int \frac{1-\sin ^{2} \theta}{\sin ^{2} \theta} d \theta \\
& =\int\left(\frac{1}{\sin ^{2} \theta}-1\right) d \theta \\
& =\int\left(\csc ^{2} \theta-1\right) d \theta \\
& =-\cot \theta-\frac{\sqrt{16-x^{2}}}{x} \\
& =\int=4 \sin \theta \\
& \sin \theta=\frac{x}{4} \\
& \theta=\frac{\sin }{} \\
& =\int \frac{\sqrt{16-x^{2}}}{x^{2}} d x=-\frac{\sqrt{16-x^{2}}}{x}-\sin ^{-1}\left(\frac{x}{4}\right)+C
\end{aligned}
$$

Evaluate The Integral
(c) $\int \frac{d t}{t^{2} \sqrt{t^{2}-9}}$

$$
=\int \frac{3 \sec \theta \tan \theta d \theta}{(3 \sec \theta)^{2} 3 \tan \theta}
$$

$$
t=3 \sec \theta
$$

$$
\begin{aligned}
& d t=3 \sec \theta \tan \theta d \theta \\
& \tan \theta=\frac{\sqrt{t^{2}-9}}{3} \\
& \sqrt{t^{2}-9}=3 \tan \theta
\end{aligned}
$$

$$
=\frac{1}{9} \int \cos \theta d \theta
$$

$$
\begin{aligned}
& =\frac{1}{9} \sin \theta+C \\
& =\frac{1}{9} \frac{\sqrt{t^{2}-9}}{t}+C
\end{aligned}
$$

Evaluate The Integral (other half integer roots)

$$
\text { (d) } \begin{aligned}
& \int \frac{d y}{\left(y^{2}-2\right)^{3 / 2}}=\int \frac{d y}{\left(\sqrt{y^{2}-2}\right)^{3}} \\
= & \int \frac{\sqrt{2} \tan \theta \sec \theta d \theta}{(\sqrt{2} \tan \theta)^{3}} \\
= & \frac{1}{2} \int \frac{\sec \theta}{\tan ^{2} \theta} d \theta \\
= & \frac{1}{2} \int \frac{\cos ^{2} \theta}{\cos \theta \sin ^{2} \theta} d \theta
\end{aligned}
$$

$$
d y=\sqrt{2} \sec \theta \tan \theta d \theta
$$

$$
\sqrt{y^{2}-2}=\sqrt{2} \tan \theta
$$

$$
\begin{aligned}
& =\frac{1}{2} \int \frac{\cos \theta}{\sin ^{2} \theta} d \theta \\
& =\frac{1}{2} \int \cot \theta \csc \theta d \theta \\
& =-\frac{1}{2} \csc \theta+C \\
& =\frac{-1}{2}\left(\frac{y}{\sqrt{y^{2}-2}}\right)+C=\frac{-y}{2 \sqrt{y^{2}-2}}+C
\end{aligned}
$$

Evaluate The Integral (completing the square)
(e) $\int_{5}^{9} \frac{d t}{\sqrt{t^{2}-6 t+13}}$

$$
\begin{aligned}
t^{2}-6 t+13 & =t^{2}-6 t+9+4 \\
& =(t-3)^{2}+4
\end{aligned}
$$

$$
\begin{aligned}
& \int \frac{d t}{\sqrt{t^{2}-6 t+13}} \\
= & \int \frac{d t}{\sqrt{(t-3)^{2}+4}} \\
= & \int \frac{d u}{\sqrt{u^{2}+4}}
\end{aligned}
$$

$$
u=t-3, d u=d t
$$

$$
\begin{aligned}
& =\int \frac{2 \sec ^{2} \theta d \theta}{2 \sec \theta}=\int \sec \theta d \theta \\
& =\ln |\sec \theta+\tan \theta|+C \\
& =\ln \left|\frac{\sqrt{u^{2}+4}}{2}+\frac{u}{2}\right|+C \\
& =\ln \left|\frac{\mid(t-3)^{2}+4}{2}+\frac{t-3}{2}\right|+C=\ln \left|\sqrt{(t-3)^{2}+4}+t-3\right|+k \\
& \int_{5}^{9} \frac{d x}{\sqrt{t^{2}-6 t+13}}=\left.\ln \left|\sqrt{(t-3)^{2}+4}+t-3\right|\right|_{S} ^{9}=\ln (\sqrt{40}+6)-\ln (\sqrt{8}+2)
\end{aligned}
$$

