January 27 Math 3260 sec. 51 Spring 2020

Section 1.4: The Matrix Equation $A\mathbf{x} = \mathbf{b}$.

For $m \times n$ matrix A and vector \mathbf{x} in \mathbb{R}^n , we defined the product

$$A\mathbf{x} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n.$$

We saw that the matrix equation $A\mathbf{x} = \mathbf{b}$ is equivalent to the vector equation

$$x_1$$
a₁ + x_2 **a**₂ + · · · + x_n **a**_n = **b**

which is equivalent to the linear system whose augmented matrix is

$$[\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n \ \mathbf{b}].$$

Corollary

The equation $A\mathbf{x} = \mathbf{b}$ has a solution if and only if \mathbf{b} is a linear combination of the columns of A.

In other words, the corresponding linear system is consistent if and only if **b** is in Span $\{a_1, a_2, \dots, a_n\}$.

Example

Characterize the set of all vectors $\mathbf{b} = (b_1, b_2, b_3)$ such that $A\mathbf{x} = \mathbf{b}$ has a solution where

$$A = \left[\begin{array}{rrr} 1 & 3 & 4 \\ -4 & 2 & -6 \\ -3 & -2 & -7 \end{array} \right].$$

We set up an augmented matrix and did row operations to get

$$\begin{bmatrix} 1 & 3 & 4 & b_1 \\ -4 & 2 & -6 & b_2 \\ -3 & -2 & -7 & b_3 \end{bmatrix} \text{ ref} \longrightarrow \begin{bmatrix} 1 & 3 & 4 & b_1 \\ 0 & 14 & 10 & b_2 + 4b_1 \\ 0 & 0 & 0 & -2b_1 + b_2 - 2b_3 \end{bmatrix}$$

Vector Parametric Form

The previous system was consistent if and only if **b** solves the linear system

$$-2b_1+b_2-2b_3=0.$$

This has solution set in parametric form¹

$$b_1 = \frac{1}{2}b_2 - b_3$$

 $b_2, b_3 - \text{free}$

This solution can be stated in **vector parametric form**

$$\mathbf{b} = b_2 \begin{bmatrix} \frac{1}{2} \\ 1 \\ 0 \end{bmatrix} + b_3 \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

¹See the lecture slides from January 13

Theorem (first in a string of equivalency theorems)

Let A be an $m \times n$ matrix. Then the following are logically equivalent (i.e. they are either all true or are all false).

- (a) For each **b** in \mathbb{R}^m , the equation $A\mathbf{x} = \mathbf{b}$ has a solution.
- (b) Each **b** in \mathbb{R}^m is a linear combination of the columns of A.
- (c) The columns of A span \mathbb{R}^m .
- (d) A has a pivot position in every row.

(Note that statement (d) is about the *coefficient* matrix A, not about an augmented matrix $\begin{bmatrix} A & \mathbf{b} \end{bmatrix}$.)

Computing Ax

We can use a *row-vector* dot product rule. The i^{th} entry is $A\mathbf{x}$ is the sum of products of corresponding entries from row i of A with those of \mathbf{x} . For example

$$\begin{bmatrix} 1 & 0 & -3 \\ -2 & -1 & 4 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 5 \\ -9 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ -2 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix} \begin{bmatrix} 2 \\ -2 \\ -2 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ -2 \end{bmatrix} \begin{bmatrix} 2 \\ -2 \\ -2 \end{bmatrix} \begin{bmatrix} 2$$

multiply corresponding entries of the vows of A with the entries of the voctor and add.

$$\begin{bmatrix} 2 & 4 \\ -1 & 1 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} -3 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}$$

$$3 \times \begin{bmatrix} 2 \\ 2 \end{bmatrix} \times \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}$$

$$2(-3)+4(3)=2$$

 $-1(-3)+1(2)=5$
 $0(-3)+3(2)=6$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$3x^3 \quad 3x \mid$$

$$3x \mid$$

$$1(x_1) + 0(x_2) + 0(x_3)$$

$$0(x_1) + 1 \cdot x_2 + 0(x_3)$$

$$0(x_1) + 0(x_2) + 1 \cdot x_3$$

Identity Matrix

We'll call an $n \times n$ matrix with 1's on the diagonal and 0's everywhere else—i.e. one that looks like

$$\begin{bmatrix}
 1 & 0 & \cdots & 0 \\
 0 & 1 & \cdots & 0 \\
 \vdots & \ddots & \ddots & \vdots \\
 0 & 0 & \cdots & 1
 \end{bmatrix}$$

the $n \times n$ **identity** matrix and denote it by I_n . (We'll drop the subscript if it's obvious from the context.)

This matrix has the property that for each \mathbf{x} in \mathbb{R}^n

$$I_n \mathbf{x} = \mathbf{x}$$
.

Theorem: Properties of the Matrix Product

If A is an $m \times n$ matrix, \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^n , and c is any scalar, then

(a)
$$A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$$
, and

(b)
$$A(c\mathbf{u}) = cA\mathbf{u}$$
.

Section 1.5: Solution Sets of Linear Systems

Definition A linear system is said to be **homogeneous** if it can be written in the form

$$A\mathbf{x} = \mathbf{0}$$

for some $m \times n$ matrix A and where $\mathbf{0}$ is the zero vector in \mathbb{R}^m .

Theorem: A homogeneous system $A\mathbf{x} = \mathbf{0}$ always has at least one solution $\mathbf{x} = \mathbf{0}$.

The solution $\mathbf{x} = \mathbf{0}$ is called the **trivial solution**. A more interesting question for a homogeneous system is

Does it have a nontrivial solution?

Theorem

The homogeneous equation $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution if and only if the system has at least one free variable.

Example: Determine if the homogeneous system has a nontrivial solution. Describe the solution set.

(a)
$$2x_1 + x_2 = 0$$
 will see an augmented matrix.

$$\begin{bmatrix} 2 & 1 & 0 \\ 1 & -3 & 0 \end{bmatrix} \xrightarrow{\text{ref}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$x_1 = 0 \qquad \text{free}$$

$$x_2 = 0 \qquad \text{formall}$$

The system has only the trivial solution $X_1 = X_2 = 0$.

In parametric form:

$$X^{S} = 0$$

$$X^{I} = 0$$

As a vector, the solution is

$$\vec{X} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

bote: $\begin{bmatrix} 2 & 1 \\ 1-3 \end{bmatrix}$ ref $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

we can see the coefficient matrix of the system is hamo geneous.

Their a free variable => there are so-many solutions.

$$X_1 = \frac{4}{3} \times 3$$
 $X_2 = 0$
 $X_3 - \text{free}$

Parametric form
of solutions

we can write this as a vector

 $\vec{\chi} = \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} = \begin{bmatrix} 4/3 \chi_3 \\ 0 \\ \chi_3 \end{bmatrix} = \chi_3 \begin{bmatrix} 4/3 \\ 0 \\ 1 \end{bmatrix}$

X3 is one red number

(c)
$$x_1 - 2x_2 + 5x_3 = 0$$

$$\vec{\lambda} = \begin{pmatrix} x^3 \\ x^3 \end{pmatrix} = \begin{pmatrix} x^2 \\ x^2 \\ x^3 \end{pmatrix}$$

=
$$X_2$$
 $\begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$ ψ X_3 $\begin{pmatrix} -5 \\ 0 \\ 1 \end{pmatrix}$
 X_2 , X_3 are any real numbers.

Parametric Vector Form of a Solution Set

Example (b) had a solution set consisting of vectors of the form $\mathbf{x} = x_3 \mathbf{v}$. Example (c)'s solution set consisted of vector that look like $\mathbf{x} = x_2 \mathbf{u} + x_3 \mathbf{v}$. Since these are **linear combinations**, we could write the solution sets like

Span
$$\{\mathbf{W}\}$$
 or Span $\{\mathbf{u}, \mathbf{v}\}$.

Instead of using the variables x_2 and/or x_3 we often substitute parameters such as s or t.

The forms

$$\mathbf{x} = s\mathbf{u}$$
, or $\mathbf{x} = s\mathbf{u} + t\mathbf{v}$

are called **parametric vector forms**.

Example

The parametric vector form of the solution set of

$$x_1 - 2x_2 + 5x_3 = 0$$
 is

$$\mathbf{x} = s \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -5 \\ 0 \\ 1 \end{bmatrix}, \quad \mathsf{where} \ s, t \in \mathbb{R}.$$

Question: What geometric object is that solution set?