January 28 MATH 1112 sec. 54 Spring 2019

Section 2.5: Basic Transformations

From a small library of known function plots, we can graph a variety of functions if they can be determined as simple tranformations. We'll consider the following transformations:

- Translations shifting a graph up or down (vertical) or to the left or right (horizontal)
- Reflections taking the mirror image in the x or y axis
- Scaling stretching or shriking a graph in either of the vertical or horizontal orientations

Vertical Translation: $y=f(x)+b$ or $y=f(x)-b$

Figure: The graph of $y=f(x)$ is shown along with a table of select points.
Let's consider the plots of $y=f(x)+1$ and $y=f(x)-1$.

Vertical Translation: $y=f(x)+b$ or $y=f(x)-b$

Figure: Complete the tables of values.

Vertical Translation: $y=f(x)+b$ or $y=f(x)-b$

Figure: Left: $y=f(x)$ (blue dots), compared to $y=f(x)+1$ (red) Right: $y=f(x)$ (blue dots), compared to $y=f(x)-1$ (red)

Horizontal Translation: $y=f(x-d)$ or $y=f(x+d)$

x	$f(x)$
-2	0
-1	1
0	0
1	2
2	$\frac{3}{2}$
3	1

Figure: The graph of $y=f(x)$ is shown along with a table of select points. Let's consider the plots of $y=f(x-1)$ and $y=f(x+1)$.

Horizontal Translation: $y=f(x-d)$ or $y=f(x+d)$

x	-4	-3	-2	-1	0	1	2	3	4
$f(x)$	und	und	0	1	0	2	$\frac{3}{2}$	1	1 und
$f(x-1)$	$f(-5)$ und	$f(-4)$ und	$f(-3)$	$f(-2)$	1	0	2	$\frac{3}{2}$	1
$f(x+1)$	$f(-3)$	0	1	0	$f(-2)$	1	0	2	$\frac{3}{2}$
und	1	1	ind	und					

Figure: Complete the tables of values.

Horizontal Translation: $y=f(x-d)$ or $y=f(x+d)$

Figure: Left: $y=f(x)$ (blue dots), compared to $y=f(x-1)$ (red) Right: $y=f(x)$ (blue dots), compared to $y=f(x+1)$ (red)

Vertical and Horizontal Translations

For $b>0$ and $d>0$

- the graph of $y=f(x)+b$ is the graph of $y=f(x)$ shifted up b units,
- the graph of $y=f(x)-b$ is the graph of $y=f(x)$ shifted down b units,
- the graph of $y=f(x-d)$ is the graph of $y=f(x)$ shifted right d units,
- the graph of $y=f(x+d)$ is the graph of $y=f(x)$ shifted left d units,

Question

The blue dotted curve is $y=g(x)$. The red solid curve is the graph of $y=$
(a) $g(x-2)+1$

$$
\begin{aligned}
& \text { right } 2 \text {-units } \\
& \text { and } \\
& \text { up } 1 \text {-wnit }
\end{aligned}
$$

(b) $g(x+2)+1$
(c) $g(x-2)-1$
(d) $g(x+2)-1$
(e) can't be determined without more information

Reflections: $y=f(-x)$ or $y=-f(x)$

x	$f(x)$
-2	0
-1	1
0	0
1	2
2	$\frac{3}{2}$
3	1

Figure: The graph of $y=f(x)$ is shown along with a table of select points. Now let's consider graphing $y=f(-x)$ and $y=-f(x)$

Reflections: $y=f(-x)$ or $y=-f(x)$

x	$f(x)$		x	$f(-x)$		x	$-f(x)$
-3	undef.		-3	$f(3)=1$		-3	$-f(-3)$ und
-2	0		-2	$f(2)=\frac{3}{2}$		-2	$-f(-2)=-0=0$
-1	1		-1	2		-1	$-f(-1)=-1$
0	0		0	0		0	0
1	2		1	1		1	-2
2	$\frac{3}{2}$		2	0		2	$-\frac{3}{2}$
3	1		3	und	3	-1	

Figure: Complete the tables of values.

Reflections: $y=f(-x)$ or $y=-f(x)$

Figure: Left: $y=f(x)$ (blue dots), compared to $y=f(-x)$ (red)
Right: $y=f(x)$ (blue dots), compared to $y=-f(x)$ (red)

Reflection in the coordinate axes

The graph of $y=f(-x)$ is the reflection of the graph of $y=f(x)$ across the y-axis.

The graph of $y=-f(x)$ is the reflection of the graph of $y=f(x)$ across the x-axis.

Note that if (a, b) is a point on the graph of $y=f(x)$, then
(1) the point $(-a, b)$ is on the graph of $y=f(-x)$, and
(2) the point $(a,-b)$ is on the graph of $y=-f(x)$.

Stretching and Shrinking

Since we already know that introducing a minus sign as in $f(-x)$ and $-f(x)$ results in a reflection, let's consider a positive number a and investigate the relationship between the graph of $y=f(x)$ and each of

$$
y=a f(x), \quad \text { and } \quad y=f(a x)
$$

The outcome depends on whether $a>1$ or $0<a<1$.

Why aren't we bothering with the case $a=1$?

Vertical Stretch or Shrink: $y=a f(x)$

x	$f(x)$		x	$2 f(x)$
-2	0		-2	$2 f(-2)=2 \cdot 0=0$
-1	1		-1	$2 f(-1)=2 \cdot 1=2$
0	0		0	0
1	2		1	4
2	$\frac{3}{2}$		2	3
3	1		3	2

Figure: $y=f(x)$ is in blue, and $y=2 f(x)$ is in red. Since $a=2>1$, the graph is stretched vertically.

Vertical Stretch or Shrink: $y=a f(x)$

x	$f(x)$	x	$\frac{1}{2} f(x)$
-2	0	-2	$\frac{1}{2} f(-2)=0$
-1	1		-1
0	$\frac{1}{2} f(-1)=\frac{1}{2}$		
0	0	0	0
1	2	1	1
2	$\frac{3}{2}$	2	$\frac{3}{4}$
3	1	3	$\frac{1}{2}$

Figure: $y=f(x)$ is in blue, and $y=\frac{1}{2} f(x)$ is in red. Since $a=\frac{1}{2}<1$, the graph is shrinked vertically.

Vertical Stretch or Shrink: $y=a f(x)$

The graph of $y=a f(x)$ is obtained from the graph of $y=f(x)$. If $a>0$, then
$y=a f(x)$ is stretched vertically if $a>1$, and $y=a f(x)$ is shrunk (a.k.a. compressed) vertically if $0<a<1$.

If $a<0$, then the stretch $(|a|>1)$ or shrink $(0<|a|<1)$ is combined with a reflection in the x-axis.

Horizontal Stretch or Shrink: $y=f(c x)$

Figure: $y=f(x)$ is in blue, and $y=f(2 x)$ is in red. Since $c=2>1$, the graph is shrinked horizontally.

Horizontal Stretch or Shrink: $y=f(c x)$

Figure: $y=f(x)$ is in blue, and $y=f\left(\frac{1}{2} x\right)$ is in black. Since $c=\frac{1}{2}<1$, the graph is stretched horizontally.

Horizontal Stretch or Shrink: $y=f(c x)$

Figure: $y=f(x)$ is in blue dots. The compressed red curve is $y=f(2 x)$, and the stretched black curve is $y=f\left(\frac{1}{2} x\right)$.

Horizontal Stretch or Shrink: $y=f(c x)$

The examples given generalize except that we did not consider an example with $c<0$. This combines the stretch/shrink with a reflection. We have the following result:

The graph of $y=f(c x)$ is obtained from the graph of $y=f(x)$. If $c>0$, then
$y=f(c x)$ is shrunk (a.k.a. compressed) horizontally if $c>1$, and $y=f(c x)$ is stretched horizontally if $0<c<1$.

If $c<0$, then the shrink $(|c|>1)$ or stretch $(0<|c|<1)$ is combined with a reflection in the y-axis.

Section 2.4: Symmetry

Consider the function $f(x)=2 x^{2}+1$. Suppose we wished to plot the new function $h(x)=f(-x)$. Note that

$$
h(x)=f(-x)=2(-x)^{2}+1=2 x^{2}+1=f(x) .
$$

Since the graph of h is obtained from f by reflection in the y-axis, and h and f are the same function, it must be that
the graph of f is its own reflection in the y-axis!
Definition: If a function f is called an even function if

$$
f(-x)=f(x)
$$

for each x in its domain. We can say that such a function has even symmetry.

Even Symmetry

Figure: The graph to the left of the y-axis is the mirror image of the graph on the right side if a function is even.

Symmetry

Consider the function $f(x)=x-\frac{1}{2} x^{3}$, and let $g(x)=f(-x)$. Then note that
$g(x)=f(-x)=(-x)-\frac{1}{2}(-x)^{3}=-x+\frac{1}{2} x^{3}=-\left(x-\frac{1}{2} x^{3}\right)=-f(x)$.
So $g(x)$ is the reflection in the y-axis, and it's equal to the reflection in the x-axis. That is
the reflection of f in the y-axis is its reflection in the x-axis!

Definition: If a function f is called an odd function if

$$
f(-x)=-f(x)
$$

for each x in its domain. We can say that such a function has odd symmetry.

Odd Symmetry

Figure: The graph of f to the left of the y-axis can be obtained by reflecting the graph on the right twice-through the y-axis and then the x-axis.

