January 28 MATH 1112 sec. 54 Spring 2019

Section 2.5: Basic Transformations
From a small library of known function plots, we can graph a variety of

functions if they can be determined as simple tranformations. We'll
consider the following transformations:

» Translations shifting a graph up or down (vertical) or to the left or
right (horizontal)

» Reflections taking the mirrorimage in the x or y axis

» Scaling stretching or shriking a graph in either of the vertical or
horizontal orientations
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Vertical Translation: y = f(x) + bory =f(x) — b
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Figure: The graph of y = f(x) is shown along with a table of select points.
Let’s consider the plots of y = f(x) + 1 and y = f(x) — 1.
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Vertical Translation: y = f(x) + bory =f(x) — b
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Figure: Complete the tables of values.
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Vertical Translation: y = f(x) + bory = f(x) — b
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Figure: Left: y = f(x) (blue dots), compared to y = f(x) + 1 (red)
Right: y = f(x) (blue dots), compared to y = f(x) — 1 (red)
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Horizontal Translation: y = f(x — d) or y = f(x + d)
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Figure: The graph of y = f(x) is shown along with a table of select points.
Let’s consider the plots of y = f(x — 1) and y = f(x + 1).
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Horizontal Translation: y = f(x — d) or y = f(x + d)

Figure: Complete the tables of values.
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Horizontal Translation: y = f(x — d) or y = f(x + d)
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Figure: Left: y = f(x) (blue dots), compared to y = f(x — 1) (red)
Right: y = f(x) (blue dots), compared to y = f(x + 1) (red)
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Vertical and Horizontal Translations
Forb>0andd >0

» the graph of y = f(x) + b is the graph of y = f(x) shifted up b
units,

» the graph of y = f(x) — b is the graph of y = f(x) shifted down b
units,

» the graph of y = f(x — d) is the graph of y = f(x) shifted right d
units,

» the graph of y = f(x + d) is the graph of y = f(x) shifted left d
units,
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The blue dotted curve is y = g(x). The red solid curve
) is the graph of y =
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Reflections: y = f(—x) or y = —f(x)
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Figure: The graph of y = f(x) is shown along with a table of select points.
Now let’s consider graphing y = f(—x) and y = —f(x)
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Reflections: y = f(—x) or y = —f(x)
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Figure: Complete the tables of values.
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Reflections: y = f(—x) or y = —f(x)
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Figure: Left: y = f(x) (blue dots), compared to y = f(—x) (red)
Right: y = f(x) (blue dots), compared to y = —f(x) (red)
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Reflection in the coordinate axes

The graph of y = f(—x) is the reflection of the graph of y = f(x) across
the y-axis.

The graph of y = —f(x) is the reflection of the graph of y = f(x) across
the x-axis.

Note that if (a, b) is a point on the graph of y = f(x), then

(1) the point (—a, b) is on the graph of y = f(—x), and
(2) the point (a, —b) is on the graph of y = —f(x).
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Stretching and Shrinking

Since we already know that introducing a minus sign as in f(—x) and
—f(x) results in a reflection, let’s consider a positive number a and
investigate the relationship between the graph of y = f(x) and each of

y =af(x), and y = f(ax).
The outcome depends on whethera>1or0<a< 1.

Why aren’t we bothering with the case a=1?
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Vertical Stretch or Shrink: y = af(x)
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Figure: y = f(x) isin blue, and y = 2f(x) is in red. Since a=2 > 1, the graph
is stretched vertically.
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Vertical Stretch or Shrink: y = af(x)
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Figure: y = f(x) is in blue, and y = 1f(x) is in red. Since a= } < 1, the
graph is shrinked vertically.
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Vertical Stretch or Shrink: y = af(x)

The graph of y = af(x) is obtained from the graph of y = f(x). If a > 0,
then

y = af(x) is stretched vertically if a > 1, and
y = af(x) is shrunk (a.k.a. compressed) vertically if 0 < a < 1.

If a < 0, then the stretch (|a| > 1) or shrink (0 < |a| < 1) is combined
with a reflection in the x-axis.
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Horizontal Stretch or Shrink: y = f(cx)
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Figure: y = f(x) isin blue, and y = f(2x) isin red. Since ¢ =2 > 1, the graph

is shrinked horizontally.
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Horizontal Stretch or Shrink: y = f(cx)
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Figure: y = f(x) is in blue, and y = f (}x) is in black. Since ¢ = } < 1, the
graph is stretched horizontally.
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Horizontal Stretch or Shrink: y = f(cx)
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Figure: y = f(x) is in blue dots. The compressed red curve is y = f(2x), and
the stretched black curve is y = f ($x).
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Horizontal Stretch or Shrink: y = f(cx)

The examples given generalize except that we did not consider an
example with ¢ < 0. This combines the stretch/shrink with a reflection.
We have the following result:

The graph of y = f(cx) is obtained from the graph of y = f(x). If ¢ > 0,
then

y = f(cx) is shrunk (a.k.a. compressed) horizontally if ¢ > 1, and
y = f(cx) is stretched horizontally if 0 < ¢ < 1.

If ¢ < 0, then the shrink (|c| > 1) or stretch (0 < |c| < 1) is combined
with a reflection in the y-axis.
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Section 2.4: Symmetry

Consider the function f(x) = 2x2 + 1. Suppose we wished to plot the
new function h(x) = f(—x). Note that

h(x) = f(—x) =2(=x)? +1 = 2x% + 1 = f(x).

Since the graph of his obtained from f by reflection in the y-axis, and
h and f are the same function, it must be that

the graph of f is its own reflection in the y-axis!

Definition: If a function f is called an even function if
f(—x) = f(x)

for each x in its domain. We can say that such a function has even
symmetry.
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Even Symmetry

fi(x) is even
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Figure: The graph to the left of the y-axis is the mirror image of the graph on
the right side if a function is even.
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Symmetry

Consider the function f(x) = x — 2x3, and let g(x) = f(—x). Then note
that

g(x) = F(=x) = (=x) — ~(=x2 = —x + %xS _— (x - ;x3> — _f(x).

So g(x) is the reflection in the y-axis, and it's equal to the reflection in
the x-axis. That is

the reflection of f in the y-axis is its reflection in the x-axis!

Definition: If a function f is called an odd function if
f(—x) = —f(x)

for each x in its domain. We can say that such a function has odd
symmetry.
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Odd Symmetry
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Figure: The graph of f to the left of the y-axis can be obtained by reflecting
the graph on the right twice—through the y-axis and then the x-axis.
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