January 28 Math 2306 sec. 54 Spring 2019

Section 4: Exact Equations

If $M(x, y) d x+N(x, y) d y=0$ happens to be exact, then it is equivalent to

$$
\frac{\partial F}{\partial x} d x+\frac{\partial F}{\partial y} d y=0
$$

This implies that the function F is constant on R and solutions to the
DE are given by the relation

$$
F(x, y)=C
$$

Exact Equations

Theorem: Let M and N be continuous on some rectangle R in the plane. Then the equation

$$
M(x, y) d x+N(x, y) d y=0
$$

is exact if and only if

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Example
Show that the equation is exact and obtain a family of solutions.

$$
\begin{gathered}
\left(2 x y-\sec ^{2} x\right) d x+\left(x^{2}+2 y\right) d y=0 \\
M(x, y)=2 x y-\sec ^{2} x \quad \text { and } \quad N(x, y)=x^{2}+2 y \\
\frac{\partial M}{\partial y}=\frac{\partial}{\partial y}\left(2 x y-\sec ^{2} x\right)=2 x-0=2 x \\
\frac{\partial N}{\partial x}=\frac{\partial}{\partial x}\left(x^{2}+2 y\right)=2 x+0=2 x
\end{gathered}
$$

$\frac{\partial M}{\partial x}=\frac{\partial N}{\partial y}$ the $O D E$ is exact
Solutions are given implicitly by $F(x, y)$ where

$$
\begin{aligned}
& \frac{\partial F}{\partial x}=M(x, y)=2 x y-\sec ^{2} x \quad \text { and } \\
& \frac{\partial F}{\partial y}=N(x, y)=x^{2}+2 y
\end{aligned}
$$

To integrate, we reed to consider two things
(1) When integrating with respect to x, treat y as constant (and vice versa)
(2) the "Constant" of integration con depend on the other variable

$$
\begin{aligned}
& F(x, y)=\int \frac{\partial F}{\partial x} d x=\int\left(2 x y-\sec ^{2} x\right) d x \\
&=2 y\left(\frac{x^{2}}{2}\right)-\tan x+g(y) \\
& F(x, y)=x^{2} y-\tan x+g(y)
\end{aligned}
$$

we need to find $g(s)$. We know that

$$
\frac{\partial F}{\partial y}=N(x, y)=x^{2}+2 y
$$

we ll find $\frac{\partial F}{\partial y}$ and match it to this.

$$
\begin{aligned}
\frac{\partial F}{\partial y} & =\frac{\partial}{\partial \partial}\left(x^{2} y-\tan x+g(y)\right) \\
& =x^{2}-0+g^{\prime}(y) \\
& =x^{2}+g^{\prime}(y)
\end{aligned}
$$

Matching $x^{2}+2 y=x^{2}+g^{\prime}(y)$
So $\quad g^{\prime}(y)=2 y$
One such $g(y)=y^{2}$

So up to an added constant

$$
F(x, y)=x^{2} y-\tan x+y^{2}
$$

Solutions to the ODE are defined implicitly by

$$
x^{2} y-\tan x+y^{2}=C
$$

