January 28 Math 2335 sec 51 Spring 2016

Section 2.3: Propagation of Error

Suppose x_{A} and y_{A} are approximations to the true quantities x_{T} and y_{T}, respectively.

Question: If we use the approximate values to compute approximations to $x_{T}+y_{T}, x_{T}-y_{T}, x_{T} \times y_{T}$ or $x_{T} \div y_{T}$, how will the errors in x_{A} and y_{A} affect the error in the result. For example, how does

$$
\operatorname{Err}\left(x_{A} \times y_{A}\right)=\left(x_{T} \times y_{T}\right)-\left(x_{A} \times y_{A}\right)
$$

depend on $\operatorname{Err}\left(x_{A}\right)$ and $\operatorname{Err}\left(y_{A}\right)$?
We'll call the error $\operatorname{Err}\left(x_{A} \times y_{A}\right)$ the propagated error and usually denote it E.

Interval Arithmetic

Some useful results are the triangle inequalities:

$$
\begin{gathered}
|A+B| \leq|A|+|B|, \quad \text { and } \quad|A-B| \leq|A|+|B| \\
\| A|-|B|| \leq|A-B|
\end{gathered}
$$

Bounding Propagated Error: Interval Arithmetic

For $x_{A}=3.14$ and $y_{A}=2.718$ correctly rounded to the digits shown, bound the absolute value of the propagated error $|E|$ for the division

$$
E=\frac{x_{T}}{y_{T}}-\frac{x_{A}}{y_{A}} .
$$

Recall from last time that we deteremined that

$$
3.135 \leq x_{T}<3.145, \quad \text { and } \quad 2.7175 \leq y_{T}<2.7185
$$

so that

$$
\left|\operatorname{Err}\left(x_{A}\right)\right| \leq 0.005 \text { and }\left|\operatorname{Err}\left(y_{A}\right)\right| \leq 0.0005 .
$$

$$
\text { For } \quad \begin{aligned}
& 2.7175 \leq y_{T}<2.7185 \\
& \frac{1}{2.7185}<\frac{1}{y_{T}} \leq \frac{1}{2.7175}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{3.135}{2.7185} \leq \frac{x_{T}}{y_{T}} \leq \frac{3.145}{2.7175} \\
& \frac{-x_{A}}{y_{A}} \quad \frac{-x_{A}}{y_{A}} \quad \frac{-x_{A}}{y_{A}} \\
& \frac{3.135}{2.7185}-\frac{3.14}{2.718} \leq \frac{x_{T}}{y_{T}}-\frac{x_{A}}{y_{A}} \leq \frac{3.145}{2.7175}-\frac{3.14}{2.718} \\
& -0.002052 \leq E \leq 0.002053 \\
& -0.002053<E \leqslant 0.002053 \\
& \text { So }
\end{aligned}
$$

$$
|E| \leqslant 0.002053
$$

Propagated Error in Multiplication
Let x_{A} and y_{A} approximate x_{T} and y_{T}, respectively. Show that if $\operatorname{Rel}\left(x_{A}\right)$ and $\operatorname{Rel}\left(y_{A}\right)$ are very small (compared to 1), then

$$
\begin{gathered}
\operatorname{Rel}\left(x_{A} y_{A}\right) \approx \operatorname{Rel}\left(x_{A}\right)+\operatorname{Rel}\left(y_{A}\right) . \\
\operatorname{Rel}\left(x_{A} y_{A}\right)=\frac{x_{T} y_{T}-x_{A} y_{A}}{x_{T} y_{T}} \\
\operatorname{Err}\left(x_{A}\right)=x_{T}-x_{A} \Rightarrow x_{A}=x_{T}-E_{r r}\left(x_{A}\right) \\
\text { similarly } \quad y_{A}=y_{T}-\operatorname{Err}\left(y_{A}\right)
\end{gathered}
$$

$$
\begin{aligned}
\operatorname{Rel}\left(x_{A} y_{A}\right) & =\frac{x_{T} y_{T}-\left(x_{T}-E_{r r}\left(x_{A}\right)\right)\left(y_{T}-\operatorname{Err}\left(y_{A}\right)\right)}{x_{T} y_{T}} \\
& =\frac{1}{x_{T} y_{T}}\left[x_{T} y_{T}-\left(x_{T} y_{T}-y_{T} E_{r r}\left(x_{A}\right)-x_{T} E_{r r}\left(y_{A}\right)+E_{r r}\left(x_{A}\right) E_{r r}\left(y_{A}\right)\right)\right] \\
& =\frac{1}{x_{T} y_{T}}\left[x_{T} y_{T}-x_{T} y_{T}+y_{T} E_{r r}\left(x_{A}\right)+x_{T} E_{r r}\left(y_{A}\right)-E_{r r}\left(x_{A}\right) E_{r r}\left(y_{A}\right)\right] \\
& =\frac{1}{x_{T} y_{T}}\left[y_{T} E_{r r}\left(x_{A}\right)+x_{T} E_{r r}\left(y_{A}\right)-E_{r r}\left(x_{A}\right) E_{r r}\left(y_{A}\right)\right]
\end{aligned}
$$

$$
=\frac{y_{T} \operatorname{Err}\left(x_{A}\right)}{x_{T} y_{T}}+\frac{x_{T} \operatorname{Err}\left(y_{A}\right)}{x_{T} y_{T}}-\frac{\operatorname{Err}\left(x_{A}\right) \operatorname{Err}\left(y_{A}\right)}{x_{T} y_{T}}
$$

So

$$
\begin{aligned}
& \operatorname{Rel}\left(x_{A} y_{A}\right)=\frac{E_{r r}\left(x_{A}\right)}{x_{T}}+\frac{E_{r r}\left(y_{A}\right)}{y_{T}}-\left(\frac{E_{r r}\left(x_{A}\right)}{x_{T}}\right)\left(\frac{E_{r r}\left(y_{A}\right)}{y_{T}}\right) \\
& \operatorname{Rel}\left(x_{A} y_{A}\right)=\operatorname{Rel}\left(x_{A}\right)+\operatorname{Rel}\left(y_{A}\right)-\operatorname{Rel}\left(x_{A}\right) \operatorname{Rel}\left(y_{A}\right)
\end{aligned}
$$

For $\left|\operatorname{Rel}\left(x_{A}\right)\right| \ll 1$ and $\left|\operatorname{Rel}\left(y_{A}\right)\right| \ll 1$

The product $\operatorname{Rel}\left(x_{A}\right) \operatorname{Rel}\left(y_{A}\right)$ is negligible.

Thus

$$
\operatorname{Rel}\left(x_{A} y_{A}\right) \approx \operatorname{Rel}\left(x_{A}\right)+\operatorname{Rel}\left(y_{A}\right)
$$

Mean Value Theorem (for the derivative)
Theorem: Suppose f is continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b). Then there exists a number c in (a, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

This gives $\quad f(b)-f(a)=f^{\prime}(c)(b-a)$

Propagated Error in Function Evaluation

Let $f(x)$ be some differentiable function. Suppose x_{A} is an approximation to x_{T}, and we wish to determine the function value $f\left(x_{T}\right)$. We may approximate $f\left(x_{T}\right)$ with $f\left(x_{A}\right)$. This contains propagated error that depends both on $\operatorname{Err}\left(x_{A}\right)$ and on the nature of the function f.

From the Mean Value Theorem, we have

$$
E=f\left(x_{T}\right)-f\left(x_{A}\right)=f^{\prime}(c)\left(x_{T}-x_{A}\right)
$$

where c is some number between x_{T} and x_{A}.
As usual, the value c is not known. If $x_{T} \approx x_{A}$ (as should be the case), we may approximate $f^{\prime}(c)$ with $f^{\prime}\left(x_{T}\right)$ or with $f^{\prime}\left(x_{A}\right)$-we do at least know what x_{A} is.

Example
Assume $x_{A}=2.62$ is correctly rounded to the digits shown. Bound the error $\left|f\left(x_{T}\right)-f\left(x_{A}\right)\right|$ and the relative error $\operatorname{Rel}\left(f\left(x_{A}\right)\right)$ in the approximation $\tan ^{-1}(2.62)$.

Here, $f(x)=\tan ^{-1} x$
Since X_{A} is correctly rounded

$$
2.615 \leqslant x_{T}<2.625
$$

From the MVT

$$
f\left(x_{T}\right)-f\left(x_{A}\right)=f^{\prime}(c)\left(x_{T}-x_{A}\right)
$$

For some
c between
X_{T} and X_{A}
January 27, $2016 \quad 14 / 30$

$$
\begin{gathered}
2.615-2.62 \leq x_{T}-x_{A}<2.625-2.62 \\
\Rightarrow \quad\left|x_{T}-x_{A}\right| \leq 0.005 \\
f^{\prime}(x)=\frac{1}{1+x^{2}} \text { so } f^{\prime}(c)=\frac{1}{1+c^{2}} \\
\text { For } 2.615 \leq c<2.625 \\
(2.615)^{2} \leq c^{2}<(2.625)^{2} \\
1+(2.615)^{2} \leq 1+c^{2}<1+(2.625)^{2}
\end{gathered}
$$

$$
\begin{aligned}
& \frac{1}{1+(2.625)^{2}} \leq \frac{1}{1+c^{2}} \leq \frac{1}{1+(2.615)^{2}}=0.12758 \\
& \left|\tan ^{-1} x_{T}-\tan ^{-1} x_{A}\right| \leq 0.12758 \cdot 0.005 \stackrel{1}{=} 0.000638 \\
& \operatorname{Rel}\left(\tan ^{-1}\left(x_{A}\right)\right)=\frac{E}{\tan ^{-1}\left(x_{T}\right)} \\
& \text { For } 2.615 \leq x_{T}<2.625
\end{aligned}
$$

Recall $\tan ^{-1} x$ is an increasing function.

$$
\begin{aligned}
& \tan ^{-1}(2.615) \leq \tan ^{-1}\left(x_{T}\right)<\tan ^{-1}(2.625) \\
\Rightarrow \quad & \frac{1}{\tan ^{-1}(2.625)} \leq \frac{1}{\tan ^{-1}\left(x_{T}\right)} \leq \frac{1}{\tan ^{-1}(2.615)}
\end{aligned}
$$

$$
\begin{aligned}
\left|\operatorname{Rel}\left(\tan ^{-1} x_{T}\right)\right|=\left|\frac{E}{\operatorname{ten}^{-1}\left(x_{T}\right)}\right| & \leqslant 0.000638 \frac{1}{\tan ^{-1}(2.615)} \\
& \doteq 0.000529
\end{aligned}
$$

Propagated Error Estimates in Function Evaluation

We have the propagated error and relative error estimates

$$
E \approx f^{\prime}\left(x_{T}\right) \operatorname{Err}\left(x_{A}\right)
$$

and

$$
\operatorname{Rel}\left(f\left(x_{A}\right)\right) \approx \frac{f^{\prime}\left(x_{T}\right)\left(x_{T}-x_{A}\right)}{f\left(x_{T}\right)}=\frac{x_{T} f^{\prime}\left(x_{T}\right)}{f\left(x_{T}\right)} \operatorname{Rel}\left(x_{A}\right)
$$

Example

Let $f(x)=b^{x}$ for some positive number $b \neq 1$. Find expressions for the propagated error and relative error $f\left(x_{T}\right)-f\left(x_{A}\right)$ and $\operatorname{Rel}\left(f\left(x_{A}\right)\right)$.

$$
\begin{aligned}
f\left(x_{T}\right)-f\left(x_{A}\right) & \approx f^{\prime}\left(x_{T}\right)\left(x_{T}-x_{A}\right) \\
f^{\prime}(x)=b^{x} \ln b & \text { Hence } \\
E & \approx b^{x_{T}} \ln b\left(x_{T}-x_{A}\right)
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Rel}\left(f\left(x_{A}\right)\right) & \approx \frac{x_{T} f^{\prime}\left(x_{T}\right)}{f\left(x_{T}\right)} \operatorname{Rel}\left(x_{A}\right) \\
& =\frac{x_{T} b^{x_{T}} \ln b}{b^{x_{T}}} \operatorname{Rel}\left(x_{A}\right) \\
& =x_{T} \ln b \operatorname{Rel}\left(x_{A}\right)
\end{aligned}
$$

Example
Approximate the error and relative error when $2^{22 / 7}$ is used to approximate 2^{π}.

$$
\begin{aligned}
& \text { Ow } b=2 \quad x_{T}=\pi \quad x_{A}=\frac{22}{7} \\
& \begin{aligned}
& E \approx 2^{\pi} \ln 2\left(\pi-\frac{22}{7}\right) \approx 2^{22 / 7} \ln 2\left(\pi-\frac{22}{7}\right) \\
&=-0.007735
\end{aligned} \\
& \operatorname{Rel}\left(2^{22 / 7}\right)=\pi \ln 2 \operatorname{Rel}\left(x_{A}\right)=-0.000876
\end{aligned}
$$

