January 29 Math 3260 sec. 51 Spring 2020

Section 1.5: Solution Sets of Linear Systems

Definition A linear system is said to be homogeneous if it can be written in the form

$$
A \mathbf{x}=\mathbf{0}
$$

for some $m \times n$ matrix A and where $\mathbf{0}$ is the zero vector in \mathbb{R}^{m}.

Theorem: A homogeneous system $A \mathbf{x}=\mathbf{0}$ always has at least one solution $\mathbf{x}=\mathbf{0}$.

The solution $\mathbf{x}=\mathbf{0}$ is called the trivial solution.

Theorem

The homogeneous equation $A \mathbf{x}=\mathbf{0}$ has a nontrivial solution if and only if the system has at least one free variable.

We considered the example (last time) Example: Determine if the homogeneous system has a nontrivial solution. Describe the solution set.
(b) $\begin{aligned} 3 x_{1}+5 x_{2}-4 x_{3} & =0 \\ -3 x_{1}-2 x_{2}+4 x_{3} & =0 \\ 6 x_{1}+x_{2}-8 x_{3} & =0\end{aligned}$

Using an augmented matrix, we got

$$
\left[\begin{array}{cccc}
3 & 5 & -4 & 0 \\
-3 & -2 & 4 & 0 \\
6 & 1 & -8 & 0
\end{array}\right] \quad \operatorname{rref} \longrightarrow\left[\begin{array}{cccc}
1 & 0 & -\frac{4}{3} & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Example Continued...

From the rref, we see that x_{1} and x_{2} are basic, and x_{3} is free giving us infinitely many solutions that can be expressed in

$$
\text { Parametric Form: } \begin{aligned}
& x_{1}=\frac{4}{3} x_{3} \\
& x_{2}=0 \\
& x_{3} \text { is free }
\end{aligned}
$$

or in

$$
\text { Parametric Vector Form: } \mathbf{x}=x_{3}\left[\begin{array}{l}
\frac{4}{3} \\
0 \\
1
\end{array}\right]
$$

where the free variable, x_{3} can be any real number.

Nonhomogeneous Systems
Find all solutions of the nonhomogeneous system of equations

$$
\begin{aligned}
& 3 x_{1}+5 x_{2}-4 x_{3}=7 \\
& \text { we con use on } \\
& -3 x_{1}-2 x_{2}+4 x_{3}=-1 \\
& 6 x_{1}+x_{2}-8 x_{3}=-4 \\
& {\left[\begin{array}{cccc}
3 & 5 & -4 & 7 \\
-3 & -2 & 4 & -1 \\
6 & 1 & -8 & -4
\end{array}\right] \xrightarrow{\text { ret }}\left[\begin{array}{cccc}
1 & 0 & -4 / 3 & -1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

The solutions in parametric
form are

$$
\begin{aligned}
& x_{1}=-1+\frac{4}{3} x_{3} \\
& x_{2}=2 \\
& x_{3}-\text { free }
\end{aligned}
$$

In parametric vector form

$$
\vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-1+\frac{4}{3} x_{3} \\
2 \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
4 / 3 \\
0 \\
1
\end{array}\right]
$$

The form of this solution is a fixed vector plus any solution to the homogeneous system with the same Lett hand side.

Solutions of Nonhomogeneous Systems

Note that the solution in this example has the form

$$
\mathbf{x}=\mathbf{p}+t \mathbf{v}
$$

with \mathbf{p} and \mathbf{v} fixed vectors and t a varying parameter. Also note that the $t v$ part is the solution to the previous example with the right hand side all zeros. This is no coincidence!
\mathbf{p} is called a particular solution, and $t \mathbf{v}$ is called a solution to the associated homogeneous equation.

Theorem

Suppose the equation $A \mathbf{x}=\mathbf{b}$ is consistent for a given \mathbf{b}. Let \mathbf{p} be a solution. Then the solution set of $A \mathbf{x}=\mathbf{b}$ is the set of all vectors of the form

$$
\mathbf{x}=\mathbf{p}+\mathbf{v}_{h}
$$

where \mathbf{v}_{h} is any solution of the associated homogeneous equation $A \mathbf{x}=\mathbf{0}$.

We can use a row reduction technique to get all parts of the solution in one process.

Example
Find the solution set of the following system. Express the solution set in parametric vector form.

$$
\begin{aligned}
x_{1}+x_{2}-2 x_{3}+4 x_{4} & =1 \quad \text { Using on } \\
2 x_{1}+3 x_{2}-6 x_{3}+12 x_{4} & =4 \\
{\left[\begin{array}{ccccc}
1 & 1 & -2 & 4 & 1 \\
2 & 3 & -6 & 12 & 4
\end{array}\right] } & \xrightarrow{\text { ret }}\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & -1 \\
0 & 1 & -2 & 4 & 2
\end{array}\right]
\end{aligned}
$$

The solution in parametric fare looks
like

$$
\begin{aligned}
& x_{1}=-1 \\
& x_{2}=2+2 x_{3}-4 x_{4} \\
& x_{3}, x_{4}-\text { fire }
\end{aligned}
$$

The parametric vector form

$$
\begin{aligned}
& \vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2+2 x_{3}-4 x_{4} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{l}
0 \\
2 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
0 \\
-4 \\
0 \\
1
\end{array}\right] \\
& \gamma \\
& \text { p } i_{n}
\end{aligned}
$$

Section 1.7: Linear Independence

We already know that a homogeneous equation $A \mathbf{x}=\mathbf{0}$ can be thought of as an equation in the column vectors of the matrix $A=\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}\end{array}\right]$ as

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots x_{n} \mathbf{a}_{n}=\mathbf{0}
$$

And, we know that at least one solution (the trivial one $x_{1}=x_{2}=\cdots=x_{n}=0$) always exists.

Whether or not there is a nontrivial solution gives us a way to characterize the vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$.

Definition: Linear Dependence/Independence

An indexed set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ in \mathbb{R}^{n} is said to be linearly independent if the vector equation

$$
x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots x_{p} \mathbf{v}_{p}=\mathbf{0}
$$

has only the trivial solution.
The set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ is said to be linearly dependent if there exists a set of weights $c_{1}, c_{2}, \ldots, c_{p}$ at least one of which is nonzero such that

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots c_{p} \mathbf{v}_{p}=\mathbf{0}
$$

(i.e. Provided the homogeneous equation posses a nontrivial solution.)

An equation $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots c_{p} \mathbf{v}_{p}=\mathbf{0}$, with at least one $c_{i} \neq 0$, is called a linear dependence relation.

Theorem on Linear Independence

Theorem: The columns of a matrix A are linearly independent if and only if the homogeneous equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.

Example
Determine if the set is linearly dependent or linearly independent.
(a) $\mathbf{v}_{1}=\left[\begin{array}{l}2 \\ 4\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}1 \\ -2\end{array}\right]$ we con consider a honoseneous equation $A \vec{x}=\overrightarrow{0}$ when

$$
A=\left[\vec{v}_{1} \vec{v}_{2}\right]
$$

$$
\begin{aligned}
& \text { The augmented matrix is }
\end{aligned}
$$

The set $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ is
linearly independent

Example
Determine if the set is linearly dependent or linearly independent.
(b)

$$
\begin{aligned}
& \mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad \mathbf{v}_{3}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \quad \begin{array}{l}
\text { Let } A=\left[\overrightarrow{v_{1}} \vec{v}_{3} \vec{V}_{3}\right] \\
\text { Consider } A \vec{x}=\overrightarrow{0}
\end{array}
\end{aligned}
$$

Due to having a fIne variable, the homogeneous equation $A \vec{x}=0$ has nontrivial solutions. So the set $\left\{\vec{V}_{1}, \vec{V}_{2}, \vec{V}_{3}\right\}$ is linearly dependent.

Example
Determine if the set of vectors is linearly dependent or independent. If dependent, find a linear dependence relation.
$\left(\left[\begin{array}{l}2 \\ 3 \\ 0\end{array}\right]\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right]\right.$ Let $A=\left[\vec{V}_{1} \vec{V}_{2} \vec{V}_{3} \vec{V}_{4}\right]$

Carrel
(c) $\left\{\left[\begin{array}{l}3 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 3 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 2 \\ 0\end{array}\right]\right\}$ and consider $A \vec{x}=\overrightarrow{0}$
$\begin{array}{lllll}\vec{v}_{1} & \vec{v}_{2} & \vec{v}_{3} & \vec{v}_{4}\end{array}$

$$
\left[\begin{array}{lllll}
2 & 0 & 1 & 0 & 0 \\
3 & 0 & 0 & 1 & 0 \\
0 & 2 & 3 & 2 & 0 \\
0 & 1 & 3 & 0 & 0
\end{array}\right] \xrightarrow{\operatorname{rret}}\left[\begin{array}{ccccc}
1 & 0 & 0 & 1 / 3 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 0 & 1 & -2 / 3 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

we han a free variable \Rightarrow the vectors ane linearly dependent. we see from the ret that

$$
\begin{aligned}
& x_{1}=\frac{-1}{3} x_{4} \\
& x_{2}=-2 x_{4} \\
& x_{3}=\frac{2}{3} x_{4}
\end{aligned}
$$

The vector equation becomes

$$
-\frac{1}{3} x_{4} \vec{V}_{1}-2 x_{4} \vec{V}_{2}+\frac{2}{3} x_{4} \vec{V}_{3}+x_{4} \vec{V}_{4}=\overrightarrow{0}
$$

we get a linear dependence relation by choosing X_{4} to be any nonzero number. For example if $x_{4}=1$, we get

$$
\frac{-1}{3} \vec{v}_{1}-2 \vec{V}_{2}+\frac{2}{3} \vec{v}_{3}+\vec{V}_{4}=\overrightarrow{0}
$$

Theorem
An indexed set of two or more vectors is linearly dependent if and only if at least one vector in the set is a linear combination of the others in the set.

Example: Let \mathbf{u} and \mathbf{v} be any nonzero vectors in \mathbb{R}^{3}. Show that if \mathbf{w} is any vector in $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$, then the set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly dependent.

Since \vec{w} is in $\operatorname{Spon}\{\vec{u}, \vec{v}\}$, there are numbers C_{1}, C_{2} such that

$$
\vec{w}=c_{1} \vec{u}+c_{2} \vec{v}
$$

Subtracting \vec{w}, we get

$$
c_{1} \vec{u}+c_{2} \vec{v}-\vec{w}=\overrightarrow{0}
$$

This is a linear dependence relation. The coefficients one c_{1}, c_{2} and -1 since at least one of these (the -1) is nonzero, $\{\vec{u}, \vec{v}, \vec{\omega}\}$ is linearly dependent.

Caveat!

A set may be linearly dependent even if all proper subsets are linearly independent. For example, consider

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \quad \text { and } \quad \mathbf{v}_{3}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] .
$$

Each set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$, $\left\{\mathbf{v}_{1}, \mathbf{v}_{3}\right\}$, and $\left\{\mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly independent. (You can easily verify this.)

However,

$$
\mathbf{v}_{3}=\mathbf{v}_{2}-\mathbf{v}_{1} \text { i.e. } \quad \mathbf{v}_{1}-\mathbf{v}_{2}+\mathbf{v}_{3}=\mathbf{0},
$$

so the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly dependent.

Two More Theorems

Theorem: If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. That is, if $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ is a set of vector in \mathbb{R}^{n}, and $p>n$, then the set is linearly dependent.

$$
\begin{aligned}
& \text { For exarple, } 3 \text { vectors in } \mathbb{R}^{2} \text { are } \\
& \text { linearly dependent. }
\end{aligned}
$$

Theorem: Any set of vectors that contains the zero vector is linearly dependent.

