January 29 Math 3260 sec. 51 Spring 2020

Section 1.5: Solution Sets of Linear Systems

Definition A linear system is said to be homogeneous if it can be

written in the form
Ax=0

for some m x n matrix A and where 0 is the zero vector in R™.

Theorem: A homogeneous system Ax = 0 always has at least one
solution x = 0.

The solution x = 0 is called the trivial solution.
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Theorem

The homogeneous equation Ax = 0 has a nontrivial solution if and
only if the system has at least one free variable.

We considered the example (last time) Example: Determine if the

homogeneous system has a nontrivial solution. Describe the solution

set.

3y + 5x — 4x3 = 0
(b) —-3xy — 2X% + 4x3 = 0
6Xx1 + X2 — 8x3 = 0

Using an augmented matrix, we got

3 5 40 10 —g 0
-3 -2 4 0 rref — 0 1 0 0
6 1 -8 0 00 0 O
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Example Continued...

From the rref, we see that x; and x» are basic, and x3 is free giving us
infinitely many solutions that can be expressed in

4

X1 = 3X3
Parametric Form: x, = 0
X3 is free
orin
4
] 3
Parametric Vector Form: x=x3 | 0 |,
1

where the free variable, x3 can be any real number.
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Nonhomogeneous Systems
Find all solutions of the nonhomogeneous system of equations
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Solutions of Nonhomogeneous Systems

Note that the solution in this example has the form
X=p-+itv

with p and v fixed vectors and t a varying parameter. Also note that the
tv part is the solution to the previous example with the right hand side
all zeros. This is no coincidence!

p is called a particular solution, and tv is called a solution to the
associated homogeneous equation.
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Theorem

Suppose the equation Ax = b is consistent for a given b. Let p be a
solution. Then the solution set of Ax = b is the set of all vectors of the
form

X =P+ Vp,

where vy, is any solution of the associated homogeneous equation
Ax = 0.

We can use a row reduction technique to get all parts of the solution in
one process.
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Example

Find the solution set of the following system. Express the solution set
in parametric vector form.

X+ X 2x3 + 4xq 1 Osing " s e
2x1 + 3x 6x3 + 12x4 4 Cng e
l [ -2 crek |, -
R 12 > 29 2
_Y\\"" Saluhon A VO\I\GML“\C ’Ci/ N \eo\‘c-.!'
QL\LL X, = |
X, L 72wz —Xy

Xy K = tra
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Section 1.7: Linear Independence

We already know that a homogeneous equation Ax = 0 can be
thought of as an equation in the column vectors of the matrix
A=Jajap --- ap as

Xj@y + Xo@2 + - - - Xpap = 0.

And, we know that at least one solution (the trivial one
X1 = X2 = --- = Xp = 0) always exists.

Whether or not there is a nontrivial solution gives us a way to
characterize the vectors a, ..., an.

January 27, 2020

11/23



Definition: Linear Dependence/Independence

An indexed set of vectors {v1,V»,...,Vvp} in R” is said to be linearly
independent if the vector equation

X{Vy + XoV2 + -+ - XpVp = 0

has only the trivial solution.

The set {vq,Va,...,Vp} is said to be linearly dependent if there exists
a set of weights ¢y, ¢y, .. ., Cp at least one of which is nonzero such that

C1V1 + CoVo + -+ - CpVp = 0.

(i.e. Provided the homogeneous equation posses a nontrivial solution.)

An equation ¢1Vy + CoV2 + - - - CpVp = 0, with at least one ¢; # 0, is
called a linear dependence relation.
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Theorem on Linear Independence

Theorem: The columns of a matrix A are linearly independent if and
only if the homogeneous equation Ax = 0 has only the trivial solution.
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Example
Determine if the set is linearly dependent or linearly independent.
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Example
Determine if the set is linearly dependent or linearly independent.

1 0 1 Lo A= (S0 Vs V7
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Example

Determine if the set of vectors is linearly dependent or independent. If
dependent, find a linear dependence relation.
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Theorem

An indexed set of two or more vectors is linearly dependent if and only

if at least one vector in the set is a linear combination of the others in
the set.

Example: Let u and v be any nonzero vectors in R3. Show that if w is
any vector in Span{u, v}, then the set {u,v,w} is linearly dependent.
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Caveat!

A set may be linearly dependent even if all proper subsets are linearly
independent. For example, consider

1 1 0
vi=| 0|, vo=|1|, and vz=1| 1 |.
0 0 0

Each set {vq,Vv2}, {v1,v3}, and {vo,v3} is linearly independent. (You
can easily verify this.)

However,
V3 =Vo—Vy i.e. Vi{—Vo+Vv3=0,

so the set {v{,Vz,Vv3} is linearly dependent.
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Two More Theorems

Theorem: If a set contains more vectors than there are entries in each
vector, then the set is linearly dependent. That is, if {v{,v2,...,Vp} is
a set of vector in R”, and p > n, then the set is linearly dependent.

For e\m-\@Q« b 2 \}c,c)-v*(' S N I?\FL Q2
\-\w\\j &Ww&_‘/\’

Theorem: Any set of vectors that contains the zero vector is linearly
dependent.
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