January 29 Math 3260 sec. 55 Spring 2020

Section 1.5: Solution Sets of Linear Systems

Definition A linear system is said to be **homogeneous** if it can be written in the form

$A\mathbf{x} = \mathbf{0}$

for some $m \times n$ matrix A and where **0** is the zero vector in \mathbb{R}^m .

Theorem: A homogeneous system $A\mathbf{x} = \mathbf{0}$ always has at least one solution $\mathbf{x} = \mathbf{0}$.

- 31

1/23

January 27, 2020

The solution $\mathbf{x} = \mathbf{0}$ is called the trivial solution.

Theorem

The homogeneous equation $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution if and only if the system has at least one free variable.

We considered the example (last time) **Example:** Determine if the homogeneous system has a nontrivial solution. Describe the solution set.

(b)
$$3x_1 + 5x_2 - 4x_3 = 0$$

 $-3x_1 - 2x_2 + 4x_3 = 0$
 $6x_1 + x_2 - 8x_3 = 0$

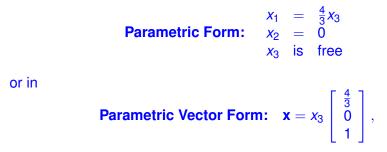
Using an augmented matrix, we got

$$\begin{bmatrix} 3 & 5 & -4 & 0 \\ -3 & -2 & 4 & 0 \\ 6 & 1 & -8 & 0 \end{bmatrix} \quad \text{rref} \longrightarrow \quad \begin{bmatrix} 1 & 0 & -\frac{4}{3} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

イロト イポト イヨト イヨト

Example Continued...

From the rref, we see that x_1 and x_2 are basic, and x_3 is free giving us infinitely many solutions that can be expressed in



where the free variable, x_3 can be any real number.

Nonhomogeneous Systems

Find all solutions of the nonhomogeneous system of equations

Using an augmented $3x_1 + 5x_2 - 4x_3 = 7$ $-3x_1 - 2x_2 + 4x_3 = -1$ metrix $6x_1 + x_2 - 8x_3 = -4$ $\begin{bmatrix} 3 & 5 & -4 & 7 \\ -3 & -2 & 4 & -1 \\ 6 & 1 & -9 & -4 \end{bmatrix} \xrightarrow{\text{rref}} \begin{bmatrix} 1 & 0 & -4/3 & -1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ The solutions satisfy X1 = -1 + + + X3 $X_z = Z$ $X_z - free$

In vector form

$$\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array} =
\begin{array}{c}
-1 + \frac{y_{3}}{3} \\
z \\
x_{3}
\end{array} =
\begin{array}{c}
-1 \\
z \\
0
\end{array} +
\begin{array}{c}
x_{3} \\
0 \\
1
\end{array}$$

This has the form of a constant vector plus any solution to the system that is honoseveous with the same left hand side.

Solutions of Nonhomogeneous Systems

Note that the solution in this example has the form

 $\mathbf{x} = \mathbf{p} + t\mathbf{v}$

with **p** and **v** fixed vectors and *t* a varying parameter. Also note that the t**v** part is the solution to the previous example with the right hand side all zeros. This is no coincidence!

p is called a **particular solution**, and *t***v** is called a solution to the associated homogeneous equation.

January 27, 2020 7/23

Theorem

Suppose the equation $A\mathbf{x} = \mathbf{b}$ is consistent for a given **b**. Let **p** be a solution. Then the solution set of $A\mathbf{x} = \mathbf{b}$ is the set of all vectors of the form

$$\mathbf{x} = \mathbf{p} + \mathbf{v}_h,$$

where \mathbf{v}_h is any solution of the associated homogeneous equation $A\mathbf{x} = \mathbf{0}$.

We can use a row reduction technique to get all parts of the solution in one process.

January 27, 2020

8/23

Find the solution set of the following system. Express the solution set in parametric vector form.

<ロト <回 > < 回 > < 回 > < 回 > … 回

In parametric vector form

$$\vec{X} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ X_4 \end{pmatrix} = \begin{pmatrix} -1 \\ z_{+}zx_3 - Ux_4 \\ x_3 \\ X_4 \end{pmatrix} = \begin{pmatrix} -1 \\ z \\ 0 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} 0 \\ z \\ 1 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 0 \\ -4 \\ 0 \\ 1 \end{pmatrix}$$

Section 1.7: Linear Independence

We already know that a homogeneous equation $A\mathbf{x} = \mathbf{0}$ can be thought of as an equation in the column vectors of the matrix $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n]$ as

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n = \mathbf{0}.$$

イロト 不得 トイヨト イヨト ヨー ろくの January 27, 2020

11/23

And, we know that at least one solution (the trivial one $x_1 = x_2 = \cdots = x_n = 0$ always exists.

Whether or not there is a nontrivial solution gives us a way to characterize the vectors $\mathbf{a}_1, \ldots, \mathbf{a}_n$.

Definition: Linear Dependence/Independence

An indexed set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ in \mathbb{R}^n is said to be **linearly independent** if the vector equation

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \cdots + x_p\mathbf{v}_p = \mathbf{0}$$

has only the trivial solution.

The set $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_p\}$ is said to be **linearly dependent** if there exists a set of weights $c_1, c_2, ..., c_p$ at least one of which is nonzero such that

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots c_p\mathbf{v}_p=\mathbf{0}.$$

(i.e. Provided the homogeneous equation posses a nontrivial solution.)

An equation $c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_p \mathbf{v}_p = \mathbf{0}$, with at least one $c_i \neq 0$, is called a **linear dependence relation**.

Theorem on Linear Independence

Theorem: The columns of a matrix *A* are linearly **independent** if and only if the homogeneous equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.

Determine if the set is linearly dependent or linearly independent.

(a)
$$\mathbf{v}_1 = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ be an ose a honogeneous
system $A \neq = \vec{o}$ by letting
 $A = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 \end{bmatrix}$.

(Sing a sugmented $x_1 \vec{v}_1 + x_2 \vec{v}_2 = \vec{o}$
matrix $\begin{bmatrix} 2 & 1 & 0 \\ -2 & 0 \end{bmatrix} \stackrel{\text{cret}}{\rightarrow} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$
 $(y - z & 0 \end{bmatrix} \stackrel{\text{cret}}{\rightarrow} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$

($x_1 \vec{v}_1 + x_2 \vec{v}_2 = \vec{o}$
 $(y - z & 0) \stackrel{\text{cret}}{\rightarrow} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$
($x_1 \vec{v}_1 + x_2 \vec{v}_2 = \vec{o}$
 $(y - z & 0) \stackrel{\text{cret}}{\rightarrow} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$
($x_1 \vec{v}_1 + x_2 \vec{v}_2 = \vec{o}$
($x_1 \vec{v}_1 + x_2 \vec{v}_2 = \vec{o}$)

($x_1 \vec{v}_1 + x_2 \vec{v}_2 = \vec{o}$
($x_1 \vec{v}_1 + x_2 \vec{v}_2 = \vec{o}$)
($x_1 \vec{v}_2 + x_2 \vec{v}_2 = \vec{o}$)

Determine if the set is linearly dependent or linearly independent.

(b)
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \ \mathbf{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \qquad \begin{array}{c} A_3 \text{ in consider} \\ A_{\mathbf{x}} = \overrightarrow{0} \quad \text{then} \\ A_{\mathbf{y}} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_3 & \mathbf{v}_3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \xrightarrow{\text{rref}} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{\text{solution}} \xrightarrow{\text{solution}} \xrightarrow{\text{solution}} \xrightarrow{\text{solution}} \xrightarrow{\text{solution}} \xrightarrow{\text{solution}} \xrightarrow{\text{solution}} \xrightarrow{\text{solution}} \xrightarrow{\text{total}} \xrightarrow{\text{solution}} \xrightarrow{\text{total}} \xrightarrow{\text{solution}} \xrightarrow{\text{total}} \xrightarrow{\text{solution}} \xrightarrow{\text{total}} \xrightarrow{\text{solution}} \xrightarrow{\text{total}} \xrightarrow{\text{solution}} \xrightarrow{\text{solution}} \xrightarrow{\text{total}} \xrightarrow{\text{solution}} \xrightarrow$$

< □ ト < @ ト < 差 ト < 差 ト 差 の < ○ January 27, 2020 15/23

Determine if the set of vectors is linearly dependent or independent. If dependent, find a linear dependence relation.

-

$$(c) \left\{ \begin{bmatrix} 2\\3\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\2\\1 \end{bmatrix}, \begin{bmatrix} 0\\3\\3\\3 \end{bmatrix}, \begin{bmatrix} 0\\1\\2\\0 \end{bmatrix} \right\} \xrightarrow{\text{well use a argneted}} A = \begin{bmatrix} \overline{v}_{1}, \overline{v}_{2}, \overline{v}_{3}, \overline{v}_{4} \end{bmatrix} A \stackrel{\text{well use a argneted}}{A = \begin{bmatrix} \overline{v}_{1}, \overline{v}_{2}, \overline{v}_{3}, \overline{v}_{4} \end{bmatrix} A \stackrel{\text{well use a argneted}}{A = \begin{bmatrix} \overline{v}_{1}, \overline{v}_{2}, \overline{v}_{3}, \overline{v}_{4} \end{bmatrix} A \stackrel{\text{well use a argneted}}{A = \begin{bmatrix} \overline{v}_{1}, \overline{v}_{2}, \overline{v}_{3}, \overline{v}_{4} \end{bmatrix}} A \stackrel{\text{well use a argneted}}{A = \begin{bmatrix} \overline{v}_{1}, \overline{v}_{2}, \overline{v}_{3}, \overline{v}_{4} \end{bmatrix} A \stackrel{\text{well use a argneted}}{A = \begin{bmatrix} \overline{v}_{1}, \overline{v}_{2}, \overline{v}_{3}, \overline{v}_{4} \end{bmatrix}} A \stackrel{\text{well use argneted}}{A = \begin{bmatrix} \overline{v}_{1}, \overline{v}_{2}, \overline{v}_{3}, \overline{v}_{4} \end{bmatrix} A \stackrel{\text{well use argneted}}{A = \begin{bmatrix} \overline{v}_{1}, \overline{v}_{2}, \overline{v}_{3}, \overline{v}_{4} \end{bmatrix} A \stackrel{\text{well use argneted}}{A = \begin{bmatrix} \overline{v}_{1}, \overline{v}_{2}, \overline{v}_{3}, \overline{v}_{4} + \overline{v}_{3} \\ equivelent + to \\ x_{1}, \overline{v}_{1} + x_{2}\overline{v}_{2} + x_{3}\overline{v}_{3} + x_{4}\overline{v}_{4} = 0 \\ A \stackrel{\text{well use argneted}}{A = \begin{bmatrix} \overline{v}_{1}, \overline{v}_{2}, \overline{v}_{3}, \overline{v}_{4} \\ \overline{v}_{4}, \overline{v}_{4}, \overline{v}_{4} = 0 \\ A \stackrel{\text{well use argneted}}{A = \begin{bmatrix} \overline{v}_{1}, \overline{v}_{2}, \overline{v}_{3}, \overline{v}_{4}, \overline{v}_{4}, \overline{v}_{4} = 0 \\ A \stackrel{\text{well use argneted}}{A \stackrel{\text{well use argneted}{A \stackrel{\text{well use argneted}{A \stackrel{\text{well use argneted}}{A \stackrel{\text{well use argneted}{A \stackrel{$$

January 27, 2020 16/23

$$A \stackrel{=}{x} \stackrel{=}{=} \stackrel{\circ}{har}$$
 non-trivial solutions, the vectors
are linearly dependent.
Note, from the riset $x_1 = -\frac{1}{3} \frac{x_1}{x_2}$
 $x_2 = -\frac{2}{3} \frac{x_1}{x_2}$

The vector equation is

$$\frac{1}{3}X_{4}\vec{V}_{1} - ZX_{4}\vec{V}_{2} + \frac{2}{3}X_{4}\vec{V}_{3} + X_{4}\vec{V}_{4} = \vec{O}$$

Taking $X_{4} = I_{2}$ we set a linear dependence
relation
 $\frac{1}{3}\vec{V}_{1} - Z\vec{V}_{2} + \frac{2}{3}\vec{V}_{3} + \vec{V}_{4} = \vec{O}$

January 27, 2020 17/23

Theorem

An indexed set of two or more vectors is linearly dependent if and only if at least one vector in the set is a linear combination of the others in the set.

Example: Let **u** and **v** be any nonzero vectors in \mathbb{R}^3 . Show that if **w** is any vector in Span{**u**, **v**}, then the set {**u**, **v**, **w**} is linearly **dependent**.

Since \vec{w} is in Span $(\vec{u}, \vec{v}, \vec{v})$, there are some numbers c_1, c_2 such that $\vec{w} = c_1 \vec{u} + c_2 \vec{v}$ Subtracting \vec{w} , we set $c_1 \vec{u} + c_2 \vec{v} - \vec{w} = \vec{0}$

イロト 不得 トイヨト イヨト 二日

January 27, 2020

18/23

This is a linear dependence relation. The coefficient of \vec{w} is -1 and $-1 \neq 0$.

Caveat!

A set may be linearly dependent even if all proper subsets are linearly independent. For example, consider

$$\boldsymbol{v}_1 = \left[\begin{array}{c} 1\\ 0\\ 0 \end{array} \right], \quad \boldsymbol{v}_2 = \left[\begin{array}{c} 1\\ 1\\ 0 \end{array} \right], \quad \text{and} \quad \boldsymbol{v}_3 = \left[\begin{array}{c} 0\\ 1\\ 0 \end{array} \right].$$

Each set $\{v_1, v_2\}$, $\{v_1, v_3\}$, and $\{v_2, v_3\}$ is linearly independent. (You can easily verify this.)

However,

$$v_3 = v_2 - v_1$$
 i.e. $v_1 - v_2 + v_3 = 0$,

January 27, 2020

20/23

so the set $\{v_1, v_2, v_3\}$ is linearly dependent.

Two More Theorems

Theorem: If a set contains more vectors than there are entries in each vector, then the set is linearly **dependent**. That is, if $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_p\}$ is a set of vector in \mathbb{R}^n , and p > n, then the set is linearly dependent.

Theorem: Any set of vectors that contains the zero vector is linearly **dependent**.