January 30 MATH 1112 sec. 54 Spring 2019

Section 2.4: Symmetry

Definition: If a function f is called an even function if

$$
f(-x)=f(x)
$$

for each x in its domain. We can say that such a function has even symmetry.

Definition: If a function f is called an odd function if

$$
f(-x)=-f(x)
$$

for each x in its domain. We can say that such a function has odd symmetry.

Even Symmetry

Figure: The graph to the left of the y-axis is the mirror image of the graph on the right side if a function is even.

Odd Symmetry

Figure: The graph of f to the left of the y-axis can be obtained by reflecting the graph on the right twice-through the y-axis and then the x-axis.

Even and Odd Symmetry

- Polynomials with only even powers (including 0) are even functions. Polynomials with only odd powers are odd functions.
- Even symmetry is called symmetry with respect to the y-axis.
- Odd symmetry is called symmetry with respect to the origin.
- Not all functions have symmetry (for example polynomials with both even and odd power terms). Some important functions have known symmetry.

Question

Let $f(x)=|x|-2 x^{2}$. Then $\quad f(-x)=|-x|-2(-x)^{2}$
(a) $-|x|+2 x^{2}$
$=|x|-2 x^{2}$
(b) $|x|+2 x^{2}$
(C) $|x|-2 x^{2}$
(d) $|x|+2 x^{2}$

Question

$$
\text { Let } f(x)=|x|-2 x^{2} \text {, then }
$$

(a) f is an odd function.
(b) f is an even function.
(c) f is both an even and an odd function.
(d) f is neither even nor odd.

Question

The figure shows the plot of a function

$$
y=f(x) \text { that is }
$$

(a) Even
(b) Odd
(c) Both Even and Odd
(d) Neither Even nor Odd

x-axis Symmetry

Consider the relation $\sqrt[3]{(x-1)^{2}}+\sqrt[3]{y^{2}}=1$. Note that if we replace y with $-y$ on the left side, we get

$$
\sqrt[3]{(x-1)^{2}}+\sqrt[3]{(-y)^{2}}=\sqrt[3]{(x-1)^{2}}+\sqrt[3]{y^{2}}
$$

So if (x, y) is on the graph of the relation, so is $(x,-y)$. Such a function is said to have symmetry with respect to the x-axis-or just x-axis symmetry for short.

x-axis Symmetry

Figure: The part of the graph below the x-axis is the mirror image of the part above the x-axis.

Symmetry Checks

For a function or a relation given in terms of algebraic expressions, we can check for symmetry:

- Even: if replacing (x, y) with $(-x, y)$ results in the same formula (i.e. $f(-x)=f(x)$)
- Odd: if replacing (x, y) with $(-x,-y)$ results in the same foruma (i.e. $f(-x)=-f(x)$)
- x-axis: if replacing (x, y) with $(x,-y)$ results in the same formula.

Question

Jack and Diane are working together to graph a function. Jack thinks they should test the function for x-axis symmetry. Diane says it's not necessary to check the function for x-axis symmetry. Who is correct, and why?
(a) Jack is correct because all functions have x-axis symmetry.
(b) Jack is correct because some but not all functions have x-axis symmetry.
(c) Diane is correct because very few functions have x-axis symmetry.
(d) Diane is correct because no function can have x-axis symmetry.
Think "verticel line test"

