January 30 Math 2306 sec. 57 Spring 2018

Section 4: First Order Equations: Linear

- Put the equation in standard form $y^{\prime}+P(x) y=f(x)$, and correctly identify the function $P(x)$.
- Obtain the integrating factor $\mu(x)=\exp \left(\int P(x) d x\right)$.
- Multiply both sides of the equation (in standard form) by the integrating factor μ. The left hand side will always collapse into the derivative of a product

$$
\frac{d}{d x}[\mu(x) y]=\mu(x) f(x) .
$$

- Integrate both sides, and solve for y.

$$
y(x)=\frac{1}{\mu(x)} \int \mu(x) f(x) d x=e^{-\int P(x) d x}\left(\int e^{\int P(x) d x} f(x) d x+C\right)
$$

Bernoulli Equations

Suppose $P(x)$ and $f(x)$ are continuous on some interval (a, b) and n is a real number different from 0 or 1 (not necessarily an integer). An equation of the form

$$
\frac{d y}{d x}+P(x) y=f(x) y^{n}
$$

is called a Bernoulli equation.

Observation: This equation has the flavor of a linear ODE, but since $n \neq 0,1$ it is necessarily nonlinear. So our previous approach involving an integrating factor does not apply directly. Fortunately, we can use a change of variables to obtain a related linear equation.

Solving the Bernoulli Equation

$$
\begin{equation*}
\frac{d y}{d x}+P(x) y=f(x) y^{n} \tag{1}
\end{equation*}
$$

well introduce a new variable u, solve for u, the go back to the solution y.

Set $u=y^{1-n}$. Then $\frac{d u}{d x}=(1-n) y^{1-n-1} \cdot \frac{d y}{d x}$

$$
=(1-n) y^{-n} \frac{d y}{d x}
$$

$\operatorname{Sin} u$ in $\neq 0$, we get $\frac{d y}{d x}=\frac{1}{1-n} \hat{y} \frac{d u}{d x}$
Plug into the ODE

$$
\frac{1}{1-n} y^{n} \frac{d u}{d x}+P(x) y=f(x) y^{n}
$$

Divide by $\frac{1}{1-n} y^{n}$

$$
\frac{d u}{d x}+(1-n) P(x) \frac{y}{\underline{y^{n}}}=(1-n) f(x) \frac{y^{n}}{y^{n}}
$$

Note: $\frac{y}{y^{n}}=y^{1-n}=u$
we arrive of the finer equation in n

$$
\frac{d u}{d x}+(1-n) P(x) u=(1-n) f(x)
$$

We solve this equation for u using a_{n} integrating factor.

Then get y since

$$
y=u^{\frac{1}{1-n}}
$$

Example
Solve the initial value problem $y^{\prime}-y=-e^{2 x} y^{3}$, subject to $y(0)=1$.
Here, $n=3$. Set $u=y^{1-3}=y^{-2}$.

$$
\frac{d u}{d x}=-2 y^{-3} \frac{d y}{d x} \Rightarrow \frac{d y}{d x}=\frac{-1}{2} y^{3} \frac{d u}{d x}
$$

Subbing

$$
-\frac{1}{2} y^{3} \frac{d u}{d x}-y=-e^{2 x} y^{3}
$$

Divide by

$$
\begin{gathered}
\frac{d u}{d x}+2 \frac{y}{y^{3}} \\
y^{-2}=u \\
y^{2 x} \frac{y^{3}}{y^{3}} \\
w \\
1
\end{gathered}
$$

The equation for u is

$$
\begin{aligned}
\frac{d v}{d x}+2 u & =2 e^{2 x} \\
P(x)=2 \Rightarrow \mu=e^{\int P(x) d x} & =e^{\int 2 d x}=e^{2 x} \\
e^{2 x}\left(\frac{d u}{d x}+2 u\right) & =2 e^{2 x}\left(e^{2 x}\right) \\
\frac{d}{d x}\left[e^{2 x} u\right] & =2 e^{4 x} \\
\int \frac{d}{d x}\left[e^{2 x} u\right] d x & =\int 2 e^{4 x} d x \\
e^{2 x} u & =\frac{2}{4} e^{4 x}+C
\end{aligned}
$$

$$
1^{\text {st }} \text { order linear }
$$

in standers form.

January 26, $2018 \quad 8 / 37$

$$
u=\frac{\frac{1}{2} e^{4 x}+C}{e^{2 x}}=\frac{1}{2} e^{2 x}+C e^{-2 x}
$$

Since $u=y^{-2}, y=u^{-\frac{1}{2}}=\frac{1}{\sqrt{u}}$

Hence

$$
y=\frac{1}{\sqrt{\frac{1}{2} e^{2 x}+C e^{-2 x}}}
$$

we apply the condition $y(0)=1$.

$$
1=\frac{1}{\sqrt{\frac{1}{2} e^{0}+C e^{0}}}
$$

$$
\begin{aligned}
& 1=\frac{1}{\sqrt{\frac{1}{2}+C}} \Rightarrow \sqrt{\frac{1}{2}+C}=\frac{1}{1}=1 \\
& \left(\sqrt{\frac{1}{2}+C}\right)^{2}=1^{2} \Rightarrow \frac{1}{2}+C=1 \Rightarrow C=1-\frac{1}{2}=\frac{1}{2}
\end{aligned}
$$

The solution to the IV P is

$$
y=\frac{1}{\sqrt{\frac{1}{2} e^{2 x}+\frac{1}{2} e^{-2 x}}}
$$

Clearing the fractions, this on be written

$$
y=\frac{\sqrt{2}}{\sqrt{e^{2 x}+e^{-2 x}}}
$$

Section 5: First Order Equations Models and Applications

Figure: Mathematical Models give Rise to Differential Equations

Population Dynamics
A population of dwarf rabbits grows at a rate proportional to the current population. In 2011, there were 58 rabbits. In 2012, the population was up to 89 rabbits. Estimate the number of rabbits expected in the population in 2021.

Let's derive an equation for population (density-ie. \# rabbits per unit habitat). Let $P(t)$ be the population at tine t. well take t in years with $t=0$ in 2011 .

Rote of change of $P=\frac{d P}{d t}$ proportioned to P

$$
\Rightarrow \quad \frac{d P}{d t} \propto P
$$

ie. $\quad \frac{d P}{d t}=k P$ for some constant k.
This is a $1^{\text {st }}$ arden ODE for P, both separable and $1^{\text {st }}$ adder lineor. From the statement, we have $P(0)=58$ and $P(1)=89$.

Let's solve the IVP $\frac{d P}{d t}=k P, P(0)=58$ Seponate Vaichler $\quad \frac{1}{P} \frac{d p}{d t}=k \Rightarrow \frac{1}{P} d P=k d t$

$$
\int \frac{1}{p} d p=\int k d t \Rightarrow \ln |p|=k t+C
$$

$$
\begin{aligned}
& P=e^{k t+c}=e^{k t} \cdot e^{c}=A e^{k t}, \quad A=e^{c} \\
& P(0)=58 \text { so } P(0)=A e^{k \cdot 0}=58 \Rightarrow A=58 \\
& P(t)=58 e^{k t} \text { Using } P(1)=89 \\
& 58 e^{k \cdot 1}=89 \Rightarrow e^{k}=\frac{89}{58} \Rightarrow k=\ln \left(\frac{89}{58}\right)
\end{aligned}
$$

Hence $P(t)=58 e^{t \ln \left(\frac{89}{58}\right)}$. $\quad \ln 2021, \quad t=10$

$$
P(10)=58 e^{10 \ln \left(\frac{89}{58}\right)} \approx 4198
$$

we expect alost 4200 rabbits by 2021.

Exponential Growth or Decay

If a quantity P changes continuously at a rate proportional to its current level, then it will be governed by a differential equation of the form

$$
\frac{d P}{d t}=k P \quad \text { i.e. } \quad \frac{d P}{d t}-k P=0 .
$$

Note that this equation is both separable and first order linear. If $k>0$, P experiences exponential growth. If $k<0$, then P experiences exponential decay.

