Section 1.4: The Matrix Equation $Ax = b$.

Definition Let A be an $m \times n$ matrix whose columns are the vectors a_1, a_2, \cdots, a_n (each in \mathbb{R}^m), and let x be a vector in \mathbb{R}^n. Then the product of A and x, denoted by

$$Ax$$

is the linear combination of the columns of A whose weights are the corresponding entries in x. That is

$$Ax = x_1a_1 + x_2a_2 + \cdots + x_na_n.$$

(Note that the result is a vector in \mathbb{R}^m!)
Theorem

If A is the $m \times n$ matrix whose columns are the vectors a_1, a_2, \ldots, a_n, and b is in \mathbb{R}^m, then the matrix equation

$$Ax = b$$

has the same solution set as the vector equation

$$x_1a_1 + x_2a_2 + \cdots + x_na_n = b$$

which, in turn, has the same solution set as the linear system of equations whose augmented matrix is

$$[a_1 \ a_2 \ \cdots \ a_n \ b].$$
Corollary

The equation $Ax = b$ has a solution if and only if b is a linear combination of the columns of A.

In other words, the corresponding linear system is consistent if and only if b is in $\text{Span}\{a_1, a_2, \ldots, a_n\}$.
Theorem (first in a string of equivalency theorems)

Let A be an $m \times n$ matrix. Then the following are logically equivalent (i.e. they are either all true or are all false).

(a) For each b in \mathbb{R}^m, the equation $Ax = b$ has a solution.

(b) Each b in \mathbb{R}^m is a linear combination of the columns of A.

(c) The columns of A span \mathbb{R}^m.

(d) A has a pivot position in every row.

(Note that statement (d) is about the coefficient matrix A, not about an augmented matrix $[A \ b]$.)
A Scalar Product

If \(\mathbf{u} \) and \(\mathbf{v} \) are vectors in \(\mathbb{R}^n \), we define a scalar product (also called the dot product) via

\[
\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n
\]

Example Compute \(\mathbf{u} \cdot \mathbf{v} \) if \(\mathbf{u} = (1, 2, 3) \) and \(\mathbf{v} = (-1, 0, 4) \).
Computing Ax

We can use a *row-vector* dot product rule. The i^{th} entry in Ax is the sum of products of corresponding entries from row i of A with those of x. For example

\[
\begin{bmatrix}
1 & 0 & -3 \\
-2 & -1 & 4
\end{bmatrix}
\begin{bmatrix}
2 \\
1 \\
-1
\end{bmatrix}
\]
\[
\begin{bmatrix}
2 & 4 \\
-1 & 1 \\
0 & 3 \\
\end{bmatrix}
\begin{bmatrix}
-3 \\
2 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
\end{bmatrix}
\]
Identity Matrix

We’ll call an $n \times n$ matrix with 1’s on the diagonal and 0’s everywhere else—i.e. one that looks like

$$
\begin{bmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{bmatrix}
$$

the $n \times n$ identity matrix and denote it by I_n. (We’ll drop the subscript if it’s obvious from the context.)

This matrix has the property that for each x in \mathbb{R}^n

$$I_n x = x.$$
Theorem: Properties of the Matrix Product

If A is an $m \times n$ matrix, \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^n, and c is any scalar, then

(a) $A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$, and

(b) $A(c\mathbf{u}) = cA\mathbf{u}$.
Section 1.5: Solution Sets of Linear Systems

Definition A linear system is said to be **homogeneous** if it can be written in the form

\[Ax = 0 \]

for some \(m \times n \) matrix \(A \) and where \(0 \) is the zero vector in \(\mathbb{R}^m \).

Theorem: A homogeneous system \(Ax = 0 \) always has at least one solution \(x = 0 \).

The solution \(x = 0 \) is called the **trivial solution**. A more interesting question for a homogeneous system is

Does it have a nontrivial solution?
Theorem
The homogeneous equation $Ax = 0$ has a nontrivial solution if and only if the system has at least one free variable.

Example: Determine if the homogeneous system has a nontrivial solution. Describe the solution set.

(a) $2x_1 + x_2 = 0$
$x_1 - 3x_2 = 0$
\(\begin{align*}
3x_1 & + 5x_2 - 4x_3 = 0 \\
-3x_1 & - 2x_2 + 4x_3 = 0 \\
6x_1 & + x_2 - 8x_3 = 0
\end{align*} \)
(c) $x_1 - 2x_2 + 5x_3 = 0$
Parametric Vector Form of a Solution Set

Example (b) had a solution set consisting of vectors of the form \(x = x_3v \). Example (c)’s solution set consisted of vectors that look like \(x = x_2u + x_3v \). Since these are linear combinations, we could write the solution sets like

\[
\text{Span}\{u\} \quad \text{or} \quad \text{Span}\{u, v\}.
\]

Instead of using the variables \(x_2 \) and/or \(x_3 \) we often substitute parameters such as \(s \) or \(t \).

The forms

\[
x = su, \quad \text{or} \quad x = su + tv
\]

are called parametric vector forms.
Example

The **parametric vector form** of the solution set of
\[x_1 - 2x_2 + 5x_3 = 0 \]

is

\[
\mathbf{x} = s \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -5 \\ 0 \\ 1 \end{bmatrix}, \quad \text{where } s, t \in \mathbb{R}.
\]

Question: What geometric object is that solution set?
Nonhomogeneous Systems

Find all solutions of the nonhomogeneous system of equations

\[\begin{align*}
3x_1 + 5x_2 - 4x_3 &= 7 \\
-3x_1 - 2x_2 + 4x_3 &= -1 \\
6x_1 + x_2 - 8x_3 &= -4
\end{align*}\]
Solutions of Nonhomogeneous Systems

Note that the solution in this example has the form

\[x = p + tv \]

with \(p \) and \(v \) fixed vectors and \(t \) a varying parameter. Also note that the \(tv \) part is the solution to the previous example with the right hand side all zeros. This is no coincidence!

\(p \) is called a **particular solution**, and \(tv \) is called a solution to the associated homogeneous equation.
Theorem

Suppose the equation $Ax = b$ is consistent for a given b. Let p be a solution. Then the solution set of $Ax = b$ is the set of all vectors of the form

$$x = p + v_h,$$

where v_h is any solution of the associated homogeneous equation $Ax = 0$.

We can use a row reduction technique to get all parts of the solution in one process.
Example

Find the solution set of the following system. Express the solution set in parametric vector form.

\[
\begin{align*}
 x_1 + x_2 - 2x_3 + 4x_4 &= 1 \\
 2x_1 + 3x_2 - 6x_3 + 12x_4 &= 4
\end{align*}
\]
Section 1.7: Linear Independence

We already know that a homogeneous equation $Ax = 0$ can be thought of as an equation in the column vectors of the matrix $A = [\mathbf{a}_1 \mathbf{a}_2 \cdots \mathbf{a}_n]$ as

$$x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \cdots + x_n \mathbf{a}_n = 0.$$

And, we know that at least one solution (the trivial one $x_1 = x_2 = \cdots = x_n = 0$) always exists.

Whether or not there is a nontrivial solution gives us a way to characterize the vectors $\mathbf{a}_1, \ldots, \mathbf{a}_n$.
Definition: Linear Dependence/Independence

An indexed set of vectors \(\{v_1, v_2, \ldots, v_p\} \) in \(\mathbb{R}^n \) is said to be **linearly independent** if the vector equation

\[
x_1v_1 + x_2v_2 + \cdots + x_pv_p = 0
\]

has only the trivial solution.

The set \(\{v_1, v_2, \ldots, v_p\} \) is said to be **linearly dependent** if there exists a set of weights \(c_1, c_2, \ldots, c_p \) at least one of which is nonzero such that

\[
c_1v_1 + c_2v_2 + \cdots + c_pv_p = 0.
\]

(i.e. Provided the homogeneous equation posses a nontrivial solution.)

An equation \(c_1v_1 + c_2v_2 + \cdots + c_pv_p = 0 \), with at least one \(c_i \neq 0 \), is called a **linear dependence relation**.
Special Cases

A set with two vectors \(\{ \mathbf{v}_1, \mathbf{v}_2 \} \) is linearly dependent if one is a scalar multiple of the other.
Example

Determine if the set is linearly dependent or linearly independent.

(a) \(\mathbf{v}_1 = \begin{bmatrix} 2 \\ 4 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -1 \\ -2 \end{bmatrix} \)

(b) \(\mathbf{v}_1 = \begin{bmatrix} 2 \\ 4 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -1 \\ 2 \end{bmatrix} \)
More than Two Vectors

Theorem: The columns of a matrix A are linearly independent if and only if the homogeneous equation $Ax = 0$ has only the trivial solution.

Example: Determine if the set of vectors is linearly dependent or linearly independent. If they are dependent, find a linear dependence relation.

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 4 \\ 1 \\ 0 \end{bmatrix}$$
Theorem

An indexed set of two or more vectors is linearly dependent if and only if at least one vector in the set is a linear combination of the others in the set.

Example: Let \mathbf{u} and \mathbf{v} be any nonzero vectors in \mathbb{R}^3. Show that if \mathbf{w} is any vector in $\text{Span}\{\mathbf{u}, \mathbf{v}\}$, then the set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly dependent.
Caveat!

A set may be linearly dependent even if all proper subsets are linearly independent. For example, consider

\[
\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \quad \text{and} \quad \mathbf{v}_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}.
\]

Examine each set \(\{\mathbf{v}_1, \mathbf{v}_2\}\), \(\{\mathbf{v}_1, \mathbf{v}_3\}\), \(\{\mathbf{v}_2, \mathbf{v}_3\}\), and \(\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}\).
Two More Theorems

Theorem: If a set contains more vectors than there are entries in each vector, then the set is linearly **dependent**. That is, if \(\{ \mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_p \} \) is a set of vectors in \(\mathbb{R}^n \), and \(p > n \), then the set is linearly dependent.

Theorem: Any set of vectors that contains the zero vector is linearly dependent.
Determine if the set is linearly dependent or linearly independent

(a) \[\left\{ \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}, \begin{bmatrix} 3 \\ 3 \\ -5 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \end{bmatrix} \right\} \]
Determine if the set is linearly dependent or linearly independent

\[
\left\{ \begin{bmatrix} 2 \\ 2 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \\ -8 \\ 1 \end{bmatrix} \right\}
\]
Determine if the set is linearly dependent or linearly independent

(c) \{ \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}, \begin{bmatrix} -2 \\ -2 \\ 2 \\ 2 \end{bmatrix} \}