January 30 Math 3260 sec. 55 Spring 2018

Section 1.4: The Matrix Equation $A x=b$.

Definition Let A be an $m \times n$ matrix whose columns are the vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \cdots, \mathbf{a}_{n}\left(\right.$ each in $\left.\mathbb{R}^{m}\right)$, and let \mathbf{x} be a vector in \mathbb{R}^{n}. Then the product of A and \mathbf{x}, denoted by

Ax

is the linear combination of the columns of A whose weights are the corresponding entries in \mathbf{x}. That is

$$
A \mathbf{x}=x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n}
$$

(Note that the result is a vector in $\mathbb{R}^{m!}$)

Theorem

If A is the $m \times n$ matrix whose columns are the vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \cdots, \mathbf{a}_{n}$, and \mathbf{b} is in \mathbb{R}^{m}, then the matrix equation

$$
A \mathbf{x}=\mathbf{b}
$$

has the same solution set as the vector equation

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n}=\mathbf{b}
$$

which, in turn, has the same solution set as the linear system of equations whose augmented matrix is

$$
\left[\begin{array}{lllll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n} & \mathbf{b}
\end{array}\right] .
$$

Corollary

The equation $A \mathbf{x}=\mathbf{b}$ has a solution if and only if \mathbf{b} is a linear combination of the columns of A.

In other words, the corresponding linear system is consistent if and only if \mathbf{b} is in $\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right\}$.

Theorem (first in a string of equivalency theorems)

Let A be an $m \times n$ matrix. Then the following are logically equivalent (i.e. they are either all true or are all false).
(a) For each \mathbf{b} in \mathbb{R}^{m}, the equation $A \mathbf{x}=\mathbf{b}$ has a solution.
(b) Each \mathbf{b} in \mathbb{R}^{m} is a linear combination of the columns of A.
(c) The columns of A span \mathbb{R}^{m}.
(d) A has a pivot position in every row.
(Note that statement (d) is about the coefficient matrix A, not about an augmented matrix $\left[\begin{array}{ll}A & b\end{array}\right]$.)

A Scalar Product

If \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^{n}, we define a scalar product (also called the dot product) via

$$
\mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}
$$

Example Compute $\mathbf{u} \cdot \mathbf{v}$ if $\mathbf{u}=(1,2,3)$ and $\mathbf{v}=(-1,0,4)$.

$$
\vec{u} \cdot \vec{v}=1 \cdot(-1)+2 \cdot(0)+3 \cdot(4)=11
$$

Computing $A \mathbf{x}$
We can use a row-vector dot product rule. The $i^{\text {th }}$ entry in $A \mathbf{x}$ is the sum of products of corresponding entries from row i of A with those of x. For example

$$
\left[\begin{array}{ccc}
1 & 0 & -3 \\
-2 & -1 & 4
\end{array}\right]\left[\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{l}
1 \cdot 2+0 \cdot 1+(-3) \cdot(-1) \\
-2 \cdot 2+(-1) \cdot 1+4 \cdot(-1)
\end{array}\right]=\left[\begin{array}{c}
5 \\
-9
\end{array}\right]
$$

$2 \times 3 \quad \mathbb{R}^{3} \quad$ st entry dot product of row 1 of $A \vec{x}$ in \mathbb{R}^{2} A and \vec{x}
$2^{\text {nd }}$ entry : dot product of row 2 of A with \vec{x}.

$$
\left[\begin{array}{cc}
2 & 4 \\
-1 & 1 \\
0 & 3
\end{array}\right]\left[\begin{array}{c}
-3 \\
2
\end{array}\right]=\left[\begin{array}{l}
2 \cdot(-3)+4 \cdot 2 \\
-1 \cdot(-3)+1 \cdot 2 \\
0 \cdot(-3)+3 \cdot 2
\end{array}\right]=\left[\begin{array}{l}
2 \\
5 \\
6
\end{array}\right]
$$

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \cdot x_{1}+0 \cdot x_{2}+0 \cdot x_{3} \\
0 x_{1}+1 \cdot x_{2}+0 \cdot x_{3} \\
0 \cdot x_{1}+0 \cdot x_{2}+1 \cdot x_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

Identity Matrix

We'll call an $n \times n$ matrix with 1 's on the diagonal and 0's everywhere else-i.e. one that looks like

$$
\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]
$$

the $n \times n$ identity matrix and denote it by I_{n}. (We'll drop the subscript if it's obvious from the context.)

This matrix has the property that for each \mathbf{x} in \mathbb{R}^{n}

$$
I_{n} \mathbf{x}=\mathbf{x}
$$

Theorem: Properties of the Matrix Product

If A is an $m \times n$ matrix, \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^{n}, and c is any scalar, then
(a) $A(\mathbf{u}+\mathbf{v})=A \mathbf{u}+A \mathbf{v}$, and
(b) $A(c \mathbf{u})=c A \mathbf{u}$.

Section 1.5: Solution Sets of Linear Systems

Definition A linear system is said to be homogeneous if it can be written in the form

$$
A \mathbf{x}=\mathbf{0}
$$

for some $m \times n$ matrix A and where $\mathbf{0}$ is the zero vector in \mathbb{R}^{m}.
Theorem: A homogeneous system $A \mathbf{x}=\mathbf{0}$ always has at least one solution $\mathbf{x}=\mathbf{0}$.

The solution $\mathbf{x}=\mathbf{0}$ is called the trivial solution. A more interesting question for a homogeneous system is

Does it have a nontrivial solution?

Theorem
The homogeneous equation $A \mathbf{x}=\mathbf{0}$ has a nontrivial solution if and only if the system has at least one free variable.

Example: Determine if the homogeneous system has a nontrivial solution. Describe the solution set.
(a) $2 x_{1}+x_{2}=0$
$x_{1}-3 x_{2}=0 \quad$ In matin form $\left[\begin{array}{cc}2 & 1 \\ 1 & -3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
$\underset{\text { mat ix }}{\text { aus. }}\left[\begin{array}{ccc}2 & 1 & 0 \\ 1 & -3 & 0\end{array}\right] \xrightarrow{\text { ref }}\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$
reads as

$$
x_{1}=0
$$

$$
x_{2}=0
$$

There is only the trivial solution

$$
\vec{x}=\overrightarrow{0} .
$$

Note, $\operatorname{rret}\left[\begin{array}{cc}2 & 1 \\ 1 & -3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

Note that the reef of $\left[\begin{array}{ll}A & 0\end{array}\right]$ is the matrix $[\operatorname{rref}(A) \quad 0]$.

Hence, we can work with the wefficient matrix done when solving a homogeneous system.
$3 x_{1}+5 x_{2}-4 x_{3}=0$
(b) $-3 x_{1}-2 x_{2}+4 x_{3}=0$
$6 x_{1}+x_{2}-8 x_{3}=0$
Was coef. matrix $\left[\begin{array}{ccc}3 & 5 & -4 \\ -3 & -2 & 4 \\ 6 & 1 & -9\end{array}\right]$
$\xrightarrow{\operatorname{rret}}\left[\begin{array}{ccc}1 & 0 & -4 / 3 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right] \quad \begin{gathered}2 \text { pivots, } 3 \text { vavicbles } \\ \Rightarrow \text { there is a frue } \\ \text { variche }\end{gathered}$

The syster has non trivid solutions

From the reed

$$
\begin{array}{ll}
x_{1}=\frac{4}{3} x_{3} & \text { This } \\
x_{2}=0 & \text { Charadciser } \\
x_{3} \text {-free } & \text { the solutions }
\end{array}
$$

we con write this as

$$
\stackrel{\rightharpoonup}{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
4 / 3 x_{3} \\
0 \\
x_{3}
\end{array}\right]=x_{3}\left[\begin{array}{c}
4 / 3 \\
0 \\
1
\end{array}\right] \quad \begin{gathered}
\text { x ans } \\
x_{3} \text { ans }
\end{gathered}
$$

Every vector of this form is in the solution set.
(c) $x_{1}-2 x_{2}+5 x_{3}=0$

The coef matrix is $\left[\begin{array}{lll}1 & -2 & 5\end{array}\right]$
(it's own ref)
Solutions are given by

$$
\begin{aligned}
& x_{1}=2 x_{2}-5 x_{3} \\
& x_{2}, x_{3}-\text { free }
\end{aligned}
$$

we con write solutions \vec{x} as vectors

$$
\vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
2 x_{2}-5 x_{3} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

$$
\begin{aligned}
& =\left[\begin{array}{c}
2 x_{2} \\
x_{2} \\
0
\end{array}\right]+\left[\begin{array}{c}
-5 x_{3} \\
0 \\
x_{3}
\end{array}\right] \\
& =x_{2}\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-5 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

The system has nontrivial solutions; the solution set is described above.

Parametric Vector Form of a Solution Set

Example (b) had a solution set consisting of vectors of the form $\mathbf{x}=x_{3} \mathbf{v}$. Example (c)'s solution set consisted of vector that look like $\mathbf{x}=x_{2} \mathbf{u}+x_{3} \mathbf{v}$. Since these are linear combinations, we could write the solution sets like

$$
\operatorname{Span}\{\mathbf{u}\} \text { or } \operatorname{Span}\{\mathbf{u}, \mathbf{v}\}
$$

Instead of using the variables x_{2} and/or x_{3} we often substitute parameters such as s or t.
The forms

$$
\mathbf{x}=s \mathbf{u}, \quad \text { or } \quad \mathbf{x}=s \mathbf{u}+t \mathbf{v}
$$

are called parametric vector forms.

Example

The parametric vector form of the solution set of $x_{1}-2 x_{2}+5 x_{3}=0$ is

$$
\mathbf{x}=s\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-5 \\
0 \\
1
\end{array}\right], \quad \text { where } s, t \in \mathbb{R}
$$

Question: What geometric object is that solution set?
span of two non colineer vectors in \mathbb{R}^{3}
It's a plane containing the origin and the
points $(2,1,0),(-5,0,1)$.

Nonhomogeneous Systems
Find all solutions of the nonhomogeneous system of equations

$$
\begin{aligned}
& 3 x_{1}+5 x_{2}-4 x_{3}=7 \\
& -3 x_{1}-2 x_{2}+4 x_{3}=-1 \\
& 6 x_{1}+x_{2}-8 x_{3}=-4 \\
& {\left[\begin{array}{cccc}
3 & 5 & -4 & 7 \\
-3 & -2 & 4 & -1 \\
6 & 1 & -8 & -4
\end{array}\right] \xrightarrow{\operatorname{rref}}\left[\begin{array}{cccc}
1 & 0 & \frac{-4}{3} & -1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

The solutions satisfy

$$
\begin{aligned}
& x_{1}=-1+\frac{4}{3} x_{3} \\
& x_{2}=2 \\
& x_{3}-\text { free }
\end{aligned}
$$

we can express this as

$$
\begin{aligned}
\vec{x} & =\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-1+\frac{4}{3} x_{3} \\
2 \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right]+\left[\begin{array}{c}
\frac{4}{3} x_{3} \\
0 \\
x_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
4 / 3 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

The's has the form $\vec{x}=\vec{x}_{p}+x_{3} \vec{u}$ for constant vectors \vec{x}_{p} and \vec{u}_{u}.

Solutions of Nonhomogeneous Systems

Note that the solution in this example has the form

$$
\mathbf{x}=\mathbf{p}+t \mathbf{v}
$$

with \mathbf{p} and \mathbf{v} fixed vectors and t a varying parameter. Also note that the $t v$ part is the solution to the previous example with the right hand side all zeros. This is no coincidence!
\mathbf{p} is called a particular solution, and $t \mathbf{v}$ is called a solution to the associated homogeneous equation.

Theorem

Suppose the equation $A \mathbf{x}=\mathbf{b}$ is consistent for a given \mathbf{b}. Let \mathbf{p} be a solution. Then the solution set of $A \mathbf{x}=\mathbf{b}$ is the set of all vectors of the form

$$
\mathbf{x}=\mathbf{p}+\mathbf{v}_{h}
$$

where \mathbf{v}_{h} is any solution of the associated homogeneous equation $A \mathbf{x}=\mathbf{0}$.

We can use a row reduction technique to get all parts of the solution in one process.

