January 30 Math 3260 sec. 56 Spring 2018

Section 1.4: The Matrix Equation $A x=b$.

Definition Let A be an $m \times n$ matrix whose columns are the vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \cdots, \mathbf{a}_{n}\left(\right.$ each in $\left.\mathbb{R}^{m}\right)$, and let \mathbf{x} be a vector in \mathbb{R}^{n}. Then the product of A and \mathbf{x}, denoted by

Ax

is the linear combination of the columns of A whose weights are the corresponding entries in \mathbf{x}. That is

$$
A \mathbf{x}=x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n}
$$

(Note that the result is a vector in $\mathbb{R}^{m!}$)

Theorem

If A is the $m \times n$ matrix whose columns are the vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \cdots, \mathbf{a}_{n}$, and \mathbf{b} is in \mathbb{R}^{m}, then the matrix equation

$$
A \mathbf{x}=\mathbf{b}
$$

has the same solution set as the vector equation

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n}=\mathbf{b}
$$

which, in turn, has the same solution set as the linear system of equations whose augmented matrix is

$$
\left[\begin{array}{lllll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n} & \mathbf{b}
\end{array}\right]
$$

Corollary

The equation $A \mathbf{x}=\mathbf{b}$ has a solution if and only if \mathbf{b} is a linear combination of the columns of A.

In other words, the corresponding linear system is consistent if and only if \mathbf{b} is in $\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right\}$.

Example

Characterize the set of all vectors $\mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right)$ such that $A \mathbf{x}=\mathbf{b}$ has a solution where

$$
A=\left[\begin{array}{ccc}
1 & 3 & 4 \\
-4 & 2 & -6 \\
-3 & -2 & -7
\end{array}\right]
$$

Last time, we did row reduction on the matrix $[A \mathbf{b}]$ and found that the equation is solvable only for vectors \mathbf{b} such that

$$
-2 b_{1}+b_{2}-2 b_{3}=0 . \Rightarrow b_{1}=\frac{1}{2} b_{2}-b_{3}
$$

We can state this result in terms of a subset of \mathbb{R}^{3}.

We con restate the set δf vectors $\stackrel{b}{b}$ as

$$
\begin{aligned}
\hat{b} & =\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} b_{2}-b_{3} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} b_{2} \\
b_{2} \\
0
\end{array}\right]+\left[\begin{array}{c}
-b_{3} \\
0 \\
b_{3}
\end{array}\right] \\
& =b_{2}\left[\begin{array}{c}
\frac{1}{2} \\
1 \\
0
\end{array}\right]+b_{3}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] \quad b_{2}, b_{3} \text { are arry }
\end{aligned}
$$

So our allowable vectors \vec{b} are linear combinations of the vectors $\left[\begin{array}{c}1 / 2 \\ 1 \\ 0\end{array}\right]$ and $\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$.
we en say that $A \vec{x}=\vec{b}$ is consistent if \vec{b} is in $\operatorname{spon}\left\{\left[\begin{array}{c}1 / 2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]\right\}$.

Theorem (first in a string of equivalency theorems)

Let A be an $m \times n$ matrix. Then the following are logically equivalent (i.e. they are either all true or are all false).
(a) For each \mathbf{b} in \mathbb{R}^{m}, the equation $A \mathbf{x}=\mathbf{b}$ has a solution.
(b) Each \mathbf{b} in \mathbb{R}^{m} is a linear combination of the columns of A.
(c) The columns of A span \mathbb{R}^{m}.
(d) A has a pivot position in every row.
(Note that statement (d) is about the coefficient matrix A, not about an augmented matrix $\left[\begin{array}{ll}A & b\end{array}\right]$.)

A Scalar Product

If \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^{n}, we define a scalar product (also called the dot product) via

$$
\mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}
$$

Example Compute $\mathbf{u} \cdot \mathbf{v}$ if $\mathbf{u}=(1,2,3)$ and $\mathbf{v}=(-1,0,4)$.

$$
\vec{u} \cdot \vec{v}=1(-1)+2(0)+3(4)=11
$$

Computing $A \mathbf{x}$
We can use a row-vector dot product rule. The $i^{\text {th }}$ entry in $A \mathbf{x}$ is the sum of products of corresponding entries from row i of A with those of x. For example

$$
\left[\begin{array}{ccc}
1 & 0 & -3 \\
-2 & -1 & 4
\end{array}\right]\left[\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{l}
1(2)+0(1)+(-3)(-1) \\
-2(2)+(-1) \cdot 1+4(-1)
\end{array}\right]=\left[\begin{array}{c}
5 \\
-9
\end{array}\right]
$$

2×33^{1} \mathbb{R}^{3}
product

$$
\text { in } \mathbb{R}^{2}
$$

$1^{\text {st }}$ entry: Dot product of row 1 f A with \vec{x}
$2^{\text {nd }}$ entry: Dot product of row 2 of A with \vec{x}.

$$
\left[\begin{array}{cc}
2 & 4 \\
-1 & 1 \\
0 & 3
\end{array}\right]\left[\begin{array}{c}
-3 \\
2
\end{array}\right]=\left[\begin{array}{c}
2(-3)+4(2) \\
-1(-3)+1(2) \\
0(-3)+3(2)
\end{array}\right]=\left[\begin{array}{l}
2 \\
5 \\
6
\end{array}\right]
$$

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \cdot x_{1}+0 x_{2}+0 x_{3} \\
0 x_{1}+1 \cdot x_{2}+0 x_{3} \\
0 x_{1}+0 x_{2}+1 \cdot x_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

Identity Matrix

We'll call an $n \times n$ matrix with 1 's on the diagonal and 0's everywhere else-i.e. one that looks like

$$
\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]
$$

the $n \times n$ identity matrix and denote it by I_{n}. (We'll drop the subscript if it's obvious from the context.)

This matrix has the property that for each \mathbf{x} in \mathbb{R}^{n}

$$
I_{n} \mathbf{x}=\mathbf{x}
$$

Theorem: Properties of the Matrix Product

If A is an $m \times n$ matrix, \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^{n}, and c is any scalar, then
(a) $A(\mathbf{u}+\mathbf{v})=A \mathbf{u}+A \mathbf{v}$, and
(b) $A(c \mathbf{u})=c A \mathbf{u}$.

Section 1.5: Solution Sets of Linear Systems

Definition A linear system is said to be homogeneous if it can be written in the form

$$
A \mathbf{x}=\mathbf{0}
$$

for some $m \times n$ matrix A and where $\mathbf{0}$ is the zero vector in \mathbb{R}^{m}.
Theorem: A homogeneous system $A \mathbf{x}=\mathbf{0}$ always has at least one solution $\mathbf{x}=\mathbf{0}$.

The solution $\mathbf{x}=\mathbf{0}$ is called the trivial solution. A more interesting question for a homogeneous system is

Does it have a nontrivial solution?

Theorem
The homogeneous equation $A \mathbf{x}=\mathbf{0}$ has a nontrivial solution if and only if the system has at least one free variable.

Example: Determine if the homogeneous system has a nontrivial solution. Describe the solution set.
(a) $2 x_{1}+x_{2}=0$
we con state this as $A \vec{x}=0$
$x_{1}-3 x_{2}=0$

$$
\left[\begin{array}{cc}
2 & 1 \\
1 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

where

$$
A=\left[\begin{array}{cc}
2 & 1 \\
1 & -3
\end{array}\right], \quad \vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

This has augmented moth x

$$
\left[\begin{array}{ccc}
2 & 1 & 0 \\
1 & -3 & 0
\end{array}\right] \xrightarrow{\text { ref }}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

January 26, 2018
$15 / 42$

There are no free variables, hence there are no nontrivial Solutions.

The eqns read as $x_{1}=0$

$$
x_{2}=0
$$

The only solution is $\vec{x}=\overrightarrow{0}$.
Since the system is honogeneous, we con du rect on the coefficient matrix.

$$
\left[\begin{array}{cc}
2 & 1 \\
1 & -3
\end{array}\right] \xrightarrow{\text { ref }}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

$3 x_{1}+5 x_{2}-4 x_{3}=0$
(b) $-3 x_{1}-2 x_{2}+4 x_{3}=0$

$$
6 x_{1}+x_{2}-8 x_{3}=0
$$

An augmented matrix is

$$
\left[\begin{array}{cccc}
3 & 5 & -4 & 0 \\
-3 & -2 & 4 & 0 \\
6 & 1 & -8 & 0
\end{array}\right] \xrightarrow{\text { rect }}\left[\begin{array}{cccc}
1 & 0 & -4 / 3 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

non pivot column
with a free varichle, the system has nontrivial solutions.

From the ret

$$
\begin{aligned}
& x_{1}=\frac{4}{3} x_{3} \\
& x_{2}=0 \\
& x_{3}-\text { free }
\end{aligned}
$$

All nontrivial solutions have the fore

$$
\vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
\frac{4}{3} x_{3} \\
0 \\
x_{3}
\end{array}\right]=x_{3}\left[\begin{array}{c}
4 / 3 \\
0 \\
1
\end{array}\right]
$$

In fact, all solutions are of the form

$$
\vec{x}=x_{3}\left[\begin{array}{c}
4 / 3 \\
0 \\
1
\end{array}\right], x_{3} \text { any red }
$$

(c) $x_{1}-2 x_{2}+5 x_{3}=0$

This has coefficiant motrix $\left[\begin{array}{lll}1 & -2 & 5\end{array}\right]$
Lt's alreody in rret. Thene are fiee variables, hance there ore nontrivid solutions. \vec{x} has to satisty

$$
\begin{aligned}
& x_{1}=2 x_{2}-5 x_{3} \\
& x_{2}, x_{3}-\text { free }
\end{aligned}
$$

As a vector

$$
\begin{aligned}
\vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] & =\left[\begin{array}{cc}
2 x_{2}-5 x_{3} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
2 x_{2} \\
x_{2} \\
0
\end{array}\right]+\left[\begin{array}{c}
-5 x_{3} \\
0 \\
x_{3}
\end{array}\right] \\
& =x_{2}\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-5 \\
0 \\
1
\end{array}\right] \begin{array}{l}
x_{2}, x_{3} \text { an } \\
\text { reds }
\end{array}
\end{aligned}
$$

Parametric Vector Form of a Solution Set

Example (b) had a solution set consisting of vectors of the form $\mathbf{x}=x_{3} \mathbf{v}$. Example (c)'s solution set consisted of vector that look like $\mathbf{x}=x_{2} \mathbf{u}+x_{3} \mathbf{v}$. Since these are linear combinations, we could write the solution sets like

$$
\operatorname{Span}\{\mathbf{u}\} \text { or } \operatorname{Span}\{\mathbf{u}, \mathbf{v}\}
$$

Instead of using the variables x_{2} and/or x_{3} we often substitute parameters such as s or t.
The forms

$$
\mathbf{x}=s \mathbf{u}, \quad \text { or } \quad \mathbf{x}=s \mathbf{u}+t \mathbf{v}
$$

are called parametric vector forms.

