January 31 Math 1190 sec. 62 Spring 2017

Section 1.3: Continuity

Definition: Continuity at a Point A function f is continuous at a
number c if

lim f(x) = f(c).

X—C

This definition is equivalent to the three statements
(1) f(c) is defined (i.e. c is in the domain of f),

(2) lim f(x) exists, and
X—C
(3) the limit actually equals the function value.

If a function f is not continuous at ¢, we may say that f is
discontinuous at c
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Question

Suppose f is continuous at —4 and f(—4) = 2r. Then

Jm 700 = fy- 2w

@h

(d) can’t be determined without more information
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A Theorem on Continuous Functions

Theorem If f and g are continuous at ¢ and for any constant k, the
following are also continuous at c:

(Vf+g, (if-g, C(iiykf, (iv)fg, and (v);, if g(c) # 0.

In other words, if we combine continuous functions using addition,
subtraction, multiplication, division, and using constant factors, the
result is also continuous—provided of course that we don’t introduce
division by zero.
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Continuity on an Interval

Definition A function is continuous on an interval (a, b) if it is
continuous at each point in (a, b). A function is continuous on an
interval such as (a, b] or [a, b) or [a, b] provided it is continuous on
(a, b) and has one sided continuity at each included end point.

Graphically speaking, if f(x) is continuous on an interval (a, b), then
the curve y = f(x) will have no holes or gaps.
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Find all values of A such that f is continuous on

(—o0, 00).
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X+A x<2

f(x)
Ax? -3, 2<x

Figure: On the left, A # 2; on the right A = 3.
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Compositions

Suppose )I(imc g(x) =L, and f is continuous at L, then
*)

lim f(g(x)) =f(L) ie. lim f(g(x)):f(xliang(x)).

X—C

Theorem: If g is continuous at ¢ and f is continuous at g(c), then
(f o 9)(x) is continuous at c.

Essentially, this says that "compositions of continuous functions are
continuous.”
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Example
Suppose we know that f(x) = €* is continuous on (—oo, oc0)'. Evaluate

x2+In(2)

im e \ et
X%m "p 9()()-. ')(z.f_,o»\l , '\4‘* % s (A)V\*l
pof O'LQ reof X .
Nole Yeldn
' e = -p (%(y))
£ X‘L-fpwl 1
" @D ga e
XA p“? - e : 6
DVA'B ._°n2
e Lo =32=(
"This is true.
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Inverse Functions

Theorem: If f is a one to one function that is continuous on its domain,
then its inverse function f~! is continuous on its domain.

Continuous functions (with inverses) have continuous inverses.
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Theorem:

Intermediate Value Theorem (IVT) Suppose f is continuous on the
closed interval [a, b] and let N be any number between f(a) and f(b).
Then there exists c in the interval (a, b) such that f(c) = N.
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Application of the IVT

Show that the equation has at least one solution in the interval.

X+ x2—4=0 1<x<2

3
Lex ‘p(x) X+ X -4 Ac e ()m\bv\omc—t)
'
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fys Vel = 24=m2

Py = 2% 27U =81 UM =8
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Section 1.4: Limits and Continuity of Trigonometric,
Exponential and Logarithmic Functions

Here we list without proof? the continuity properties of several well
known functions.

sin x: The sine function y = sin x is continuous on its domain (—oc, o).
cos x: The cosine function y = cos x is continuous on its domain (—oo, o).
e*: The exponential function y = e* is continuous on its domain (—oo, o).

In(x): The natural log function y = In(x) is continuous on its domain (0, oo).

2You are already familiar with their graphs.
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Additional Functions

» By the quotient property, each of tan x, cot x, sec x and csc x are
continuous on each of their respective domains.

» For a > 0 with a # 1, the function
2= exln a

By the composition property, each exponential function y = a* is
continuous on (—oo, c0).

» For a > 0 with a # 1, the function

In x

log,(x) = na

By the constant multiple property, each logarithm function
y =log,(x) is continuous on (0, co).
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What does all this mean?

The common functions we use, polynomial and rational functions,
trigonometric functions, and logs and exponentials are continuous
everywhere on their respective domains.

So, if f is anyone of these functions and c is a number in its domain,
then )I(lmc f(x) = f(c).
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Example
Evaluate each limit.

(a) )![gr cos (x + sin x)

So foe
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z C°,(1r+0): Cos () = —\
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Example

(b) lim e®@"!
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Question .
@“«3—. ()= |

Evaluate the limit lim In(cos? x).
X—T

(a) e 9"“ ,Ok( Cofz)A = Dn( (»}“’3

PER

(b) 1 : 04 =0
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Squeeze Theorem:

Theorem: Suppose f(x) < g(x) < h(x) for all x in an interval
containing ¢ except possibly at c. If

fm () = Jim, ) = L

then
lim g(x) = L.

X—C
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Squeeze Theorem: foo ¢ goag W (%)

hix)

glxl

Jix)

L]

Figure: Graphical Representation of the Squeeze Theorem.
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Example: Evaluate
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A Couple of Important Limits

Theorem: fim 37?1 and 1im %0~ _¢
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Notational Note
The name of the variable used is irrelevant. That is

. sing sin®
im — = =
0—0 0 x—0 X o—0 QO

. sinx :
1, lim =1, lim

1

In fact, this only requires the argument of the sine to match the

denominator (exactly) and that this term is tending to zero. For
example,

. sin(66) .
im—eg - and Im—5
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Examples

Use lim $1¢ = 1 to evaluate each limit.
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Questions

(1) Evaluate if possible  lim
x—0

X
0 S (2)
X200 Cog(2x)
“x
c 9.\\ \ . S'w\(Zy)
X506 24 (2x) X
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A couple of important observations

- . COSX
lim cosx =1, soforexample Iim DNE

x—0 x—0

While itis true that lim SINX — 1, the statement
X—

sin x
=7 A
X

is always false! Don’t be tempted to write this.

Also remember that sin(kx) # ksin(x). Don’t be tempted to try to factor
out of a trig function.
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