January 31 Math 1190 sec. 63 Spring 2017

Section 1.3: Continuity

Definition: Continuity at a Point A function f is continuous at a number c if

$$
\lim _{x \rightarrow c} f(x)=f(c) .
$$

This definition is equivalent to the three statements
(1) $f(c)$ is defined (i.e. c is in the domain of f),
(2) $\lim _{x \rightarrow c} f(x)$ exists, and
(3) the limit actually equals the function value.

If a function f is not continuous at c, we may say that f is discontinuous at c

Question

Suppose f is continuous at -4 and $f(-4)=2 \pi$. Then

$$
\lim _{x \rightarrow-4} f(x)=f(-4)=2 \pi
$$

(a) -4
(b) -8π
(c) 2π
(d) can't be determined without more information

A Theorem on Continuous Functions

Theorem If f and g are continuous at c and for any constant k, the following are also continuous at c :

$$
\text { (i) } f+g, \quad \text { (ii) } f-g, \quad \text { (iii) } k f, \quad \text { (iv) } f g, \quad \text { and } \quad(v) \frac{f}{g}, \text { if } g(c) \neq 0 .
$$

In other words, if we combine continuous functions using addition, subtraction, multiplication, division, and using constant factors, the result is also continuous-provided of course that we don't introduce division by zero.

Questions

(1) Irue or False If f is continuous at 3 and g is continuous at 3 , then it must be that

$$
\begin{aligned}
\lim _{x \rightarrow 3} f(x) g(x)= & f(3) g(3) . \\
& \text { By } \text { cor }^{* x} \text { m }
\end{aligned}
$$

(2) True or False $f(2)=1$ and $g(2)=7$, then it must be that

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{f(x)}{g(x)}=\frac{1}{7} . & \text { Considan } \\
f(x) & = \begin{cases}1, & x \geqslant 2 \\
0, & x<2\end{cases} \\
g(x) & =7
\end{aligned}
$$

Continuity on an Interval

Definition A function is continuous on an interval (a, b) if it is continuous at each point in (a, b). A function is continuous on an interval such as (a, b] or $[a, b$) or $[a, b]$ provided it is continuous on (a, b) and has one sided continuity at each included end point.

Graphically speaking, if $f(x)$ is continuous on an interval (a, b), then the curve $y=f(x)$ will have no holes or gaps.

Find all values of A such that f is continuous on $(-\infty, \infty)$.

$$
f(x)=\left\{\begin{array}{ll}
x+A, & x<2
\end{array} \quad\right. \text { The pieces are continuous. }
$$

we require

$$
\begin{aligned}
& \text { equire } \lim _{x \rightarrow 2} f(x)=f(2) . \\
& f(2)=A\left(2^{2}\right)-3=4 A-3
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}}(x+A)=2+A \\
& \lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}\left(A x^{2}-3\right)=4 A-3
\end{aligned}
$$

For existence of the limit, it must be that

$$
\begin{aligned}
\lim _{x \rightarrow 2^{-}} f(x) & =\lim _{x \rightarrow 2^{+}} f(x) \\
2+A & =4 A-3 \\
5 & =3 A \Rightarrow A=\frac{5}{3}
\end{aligned}
$$

So f is continuous $C 2$ if $A=\frac{5}{3}$.

Then $\quad \lim _{x \rightarrow 2} f(x)=2+\frac{5}{3}=\frac{11}{3}$
and $f(2)=4\left(\frac{5}{3}\right)-3=\frac{20}{3}-\frac{9}{3}=\frac{11}{3}$

Figure: On the left, $A \neq \frac{5}{3}$; on the right $A=\frac{5}{3}$.

Compositions

Suppose $\lim _{x \rightarrow c} g(x)=L$, and f is continuous at L, then

$$
\lim _{x \rightarrow c} f(g(x))=f(L) \text { i.e. } \quad \lim _{x \rightarrow c} f(g(x))=f\left(\lim _{x \rightarrow c} g(x)\right) \text {. }
$$

Theorem: If g is continuous at c and f is continuous at $g(c)$, then $(f \circ g)(x)$ is continuous at c.

Essentially, this says that "compositions of continuous functions are continuous."

Example
Suppose we know that $f(x)=e^{x}$ is continuous on $(-\infty, \infty)^{1}$. Evaluate $\lim _{x \rightarrow \sqrt{\ln (3)}} e^{x^{2}+\ln (2)}$

If $g(x)=x^{2}+\ln 2$, its a quadratic and is continuous everywhere. $f(x)$ is continuous, so $f(g(x))$ is continuous.

$$
\begin{aligned}
\lim _{x \rightarrow \sqrt{\ln 3}} e^{x^{2}+\ln 2}=e^{(\sqrt{\ln 3})^{2}+\ln 2} & =e^{\ln 3+\ln 2} \\
& =e^{\ln 3} \cdot e^{\ln 2}=3 \cdot 2=6
\end{aligned}
$$

${ }^{1}$ This is true.

Inverse Functions

Theorem: If f is a one to one function that is continuous on its domain, then its inverse function f^{-1} is continuous on its domain.

Continuous functions (with inverses) have continuous inverses.

Theorem:
Intermediate Value Theorem (IVT) Suppose f is continuous on the closed interval $[a, b]$ and let N be any number between $f(a)$ and $f(b)$. Then there exists c in the interval (a, b) such that $f(c)=N$.

A continuous function must take on ever, value between $f(a)$ and $f(b)$.

Application of the IVT
Show that the equation has at least one solution in the interval.

$$
x^{3}+x^{2}-4=0 \quad 1 \leq x \leq 2
$$

Let $f(x)=x^{3}+x^{2}-4$. A solution to the equation would be a root of f. As a polynomial f is continuous at all reals, so it's continuous on $[1,2]$.

$$
\begin{aligned}
& f(1)=1^{3}+1^{2}-4=2-4=-2 \\
& f(2)=2^{3}+2^{2}-4=8+4-4=8
\end{aligned}
$$

Since $\quad-2<0<8$ ie. 0 is a number
between $f(1)$ and $f(2)$, the IVT says there exists some number C in $(1,2)$ such that $f(c)=0$.

This c is a solution since

$$
0=f(c)=c^{3}+c^{2}-4
$$

Section 1.4: Limits and Continuity of Trigonometric, Exponential and Logarithmic Functions

Here we list without proof ${ }^{2}$ the continuity properties of several well known functions.
$\sin x$: The sine function $y=\sin x$ is continuous on its domain $(-\infty, \infty)$.
$\cos x$: The cosine function $y=\cos x$ is continuous on its domain $(-\infty, \infty)$.
e^{x} : The exponential function $y=e^{x}$ is continuous on its domain $(-\infty, \infty)$.
$\ln (x)$: The natural log function $y=\ln (x)$ is continuous on its domain $(0, \infty)$.
${ }^{2}$ You are already familiar with their graphs.

Additional Functions

- By the quotient property, each of $\tan x, \cot x, \sec x$ and $\csc x$ are continuous on each of their respective domains.
- For $a>0$ with $a \neq 1$, the function

$$
a^{x}=e^{x \ln a}
$$

By the composition property, each exponential function $y=a^{x}$ is continuous on $(-\infty, \infty)$.

- For $a>0$ with $a \neq 1$, the function

$$
\log _{a}(x)=\frac{\ln x}{\ln a}
$$

By the constant multiple property, each logarithm function $y=\log _{a}(x)$ is continuous on $(0, \infty)$.

What does all this mean?

The common functions we use, polynomial and rational functions, trigonometric functions, and logs and exponentials are continuous everywhere on their respective domains.

So, if f is anyone of these functions and c is a number in its domain, then $\lim _{x \rightarrow c} f(x)=f(c)$.

Example

Evaluate each limit.
(a) $\lim _{x \rightarrow \pi} \cos (x+\sin x)$

$$
\begin{aligned}
& =\operatorname{Cos}(\pi+\sin \pi) \\
& =\operatorname{Cos}(\pi+0) \\
& =\cos (\pi)=-1
\end{aligned}
$$

$$
y=x, \quad y=\sin x, \quad y=\cos x
$$

are all continuous everywhere.

So $\operatorname{Cor}(x+\sin x)$ is continuous $C \pi$

Example
(b) $\lim _{t \rightarrow \frac{\pi}{4}} e^{\tan t}$ $\frac{\pi}{4}$ is in the domain of

$$
y=\tan t
$$

$$
=e^{\tan \frac{\pi}{4}}=e^{1}=e
$$

Question

Evaluate the limit $\lim _{x \rightarrow \pi} \ln \left(\cos ^{2} x\right)$.
(a) e

$$
\lim _{x \rightarrow \pi} \ln \left(\cos ^{2} x\right)=\ln \left(\cos ^{2} \pi\right)
$$

(b) 1
(c) DNE
(d) 0

$$
=\ln 1=0
$$

January 31, $2017 \quad 23 / 60$

Squeeze Theorem:

Theorem: Suppose $f(x) \leq g(x) \leq h(x)$ for all x in an interval containing c except possibly at c. If

$$
\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} h(x)=L
$$

then

$$
\lim _{x \rightarrow c} g(x)=L
$$

Squeeze Theorem:

$$
\begin{aligned}
& f(x) \leq g(x) \leq h(x) \\
& \lim _{x \rightarrow c} f(x)=L \text { and } \lim _{x \rightarrow c} h(x)=L
\end{aligned}
$$

Figure: Graphical Representation of the Squeeze Theorem.

Example: Evaluate
$\sin \frac{1}{\theta}$ is int defined e $\theta=0$
But the sine is bounded.

$$
\lim _{\theta \rightarrow 0} \theta^{2} \sin \frac{1}{\theta}
$$

Mut. by θ^{2}
which is positive
for all $\theta \neq 0$

$$
-1 \leq \sin \frac{1}{\theta} \leq 1
$$

$$
\begin{aligned}
& -1 \cdot \theta^{2} \leq \theta^{2} \sin \frac{1}{\theta} \leq 1 \cdot \theta^{2} \\
& -\theta^{2} \leq \theta^{2} \sin \frac{1}{\theta} \leq \theta^{2}
\end{aligned}
$$

$\lim _{\theta \rightarrow 0}-\theta^{2}=0$ and $\lim _{\theta \rightarrow 0} \theta^{2}=0 \Rightarrow \lim _{\theta \rightarrow 0} \theta^{2} \sin \frac{1}{\theta}=0$ bo the squeeze theorem

A Couple of Important Limits
Theorem: $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$ and $\lim _{\theta \rightarrow 0} \frac{\cos \theta-1}{\theta}=0$

$-\sin \theta$

- θ
$-\tan \theta$
Node $\sin \theta \leq \theta \leq \tan \theta$
Inequalities
(1) $\sin \theta \leq \theta$ and
(2) $\theta \leq \tan \theta$
(1) $\sin \theta \leq \theta \quad$ for $\theta>0 \quad \sin \theta \leq \theta \Rightarrow \frac{\sin \theta}{\theta} \leq 1$

Note that $\frac{\operatorname{Sin}(-\theta)}{-\theta}=\frac{-\operatorname{Sin} \theta}{-\theta}=\frac{\operatorname{Sin} \theta}{\theta}$
So for all θ close to zen 0

$$
\frac{\sin \theta}{\theta} \leq 1
$$

(2) $\theta \leq \tan \theta$ for $\theta>0 \quad \theta \leq \frac{\sin \theta}{\cos \theta}$

Mule. bs $\cos \theta$ and divide by θ

$$
\cos \theta \leq \frac{\sin \theta}{\theta}
$$

Since $\cos (-\theta)=\cos \theta$ and $\frac{\sin (-\theta)}{-\theta}=\frac{\sin \theta}{\theta}$

So for all θ clos to zeno

$$
\cos \theta \leq \frac{\sin \theta}{\theta}
$$

So for $\theta \approx 0 \quad \cos \theta \leq \frac{\sin \theta}{\theta} \leq 1$

$$
\begin{aligned}
& \lim _{\theta \rightarrow 0} \cos \theta=\cos 0=1 \text { and } \lim _{\theta \rightarrow 0} 1=1 \\
& \Rightarrow \quad \lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1 \text { by th squeeze the. }
\end{aligned}
$$

Notational Note

The name of the variable used is irrelevant. That is

$$
\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1, \quad \lim _{x \rightarrow 0} \frac{\sin x}{x}=1, \quad \lim _{\varnothing \rightarrow 0} \frac{\sin \odot}{\varnothing}=1
$$

In fact, this only requires the argument of the sine to match the denominator (exactly) and that this term is tending to zero. For example,

$$
\lim _{\theta \rightarrow 0} \frac{\sin (6 \theta)}{6 \theta}=1, \quad \text { and } \quad \lim _{\wp \rightarrow 0} \frac{\sin (\pi \odot)}{\pi \circlearrowleft}=1
$$

Examples
Use $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$ to evaluate each limit.
If we had $\lim _{x \rightarrow 0} \frac{\sin (4 x)}{4 x}$
(a) $\lim _{x \rightarrow 0} \frac{\sin (4 x)}{x}$ the limit would be 1 .

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin (4 x)}{x} & =\lim _{x \rightarrow 0} \frac{\sin (4 x)}{x} \cdot\left(\frac{4}{4}\right) \\
& =\lim _{x \rightarrow 0} \frac{\sin (4 x)}{4 x} \cdot \frac{4}{1}
\end{aligned}=\lim _{x \rightarrow 0} 4\left(\frac{\sin (4 x)}{4 x}\right)
$$

$$
\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1
$$

(b) $\lim _{t \rightarrow 0} \sin t \cdot \csc (3 t)$

$$
\begin{aligned}
&=\lim _{t \rightarrow 0} \frac{\sin t}{\sin (3 t)}=\lim _{t \rightarrow 0} \frac{\sin t}{1} \frac{1}{\sin (3 t)} \\
&=\lim _{t \rightarrow 0} \frac{\sin t}{t} \frac{t}{\sin (3 t)} \\
&=\lim _{t \rightarrow 0} \frac{\sin t}{t} \frac{t}{\sin (3 t)} \cdot \frac{3}{3} \\
&=\lim _{t \rightarrow 0} \frac{\sin t}{t} \frac{3 t}{\sin (3 t)} \cdot \frac{1}{3}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{t \rightarrow 0} \frac{\sin t}{t}\left(\frac{\sin (3 t)}{3 t}\right)^{-1} \cdot \frac{1}{3} \\
& \quad=1 \cdot 1^{-1} \cdot \frac{1}{3}=1 \cdot 1 \cdot \frac{1}{3}=\frac{1}{3}
\end{aligned}
$$

Questions

(1) Evaluate if possible $\lim _{x \rightarrow 0} \frac{\tan (2 x)}{4 x}$
(a) $\frac{1}{4}$

$$
\tan (2 x)=\frac{\sin (2 x)}{\cos (2 x)}
$$

s.

$$
\frac{f_{\operatorname{con}(2 x)}}{4 x}=\frac{1}{2 \cos (2 x)} \cdot \frac{\sin (2 x)}{2 x}
$$

(c) 2
(d) DNE

A couple of important observations

$$
\lim _{x \rightarrow 0} \cos x=1, \quad \text { so for example } \quad \lim _{x \rightarrow 0} \frac{\cos x}{x} \text { DNE }
$$

While it is true that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$, the statement

$$
\frac{\sin x}{x}=1
$$

is always false! Don't be tempted to write this.

Also remember that $\sin (k x) \neq k \sin (x)$. Don't be tempted to try to factor out of a trig function.

