January 31 Math 3260 sec. 55 Spring 2020

Section 1.7: Linear Independence

Definition: An indexed set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ in \mathbb{R}^n is said to be **linearly independent** if the vector equation

$$x_1\mathbf{v}_1+x_2\mathbf{v}_2+\cdots x_p\mathbf{v}_p=\mathbf{0}$$

has only the trivial solution.

The set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ is said to be **linearly dependent** if there exists a set of weights c_1, c_2, \dots, c_p at least one of which is nonzero such that

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots c_p\mathbf{v}_p=\mathbf{0}.$$

(i.e. Provided the homogeneous equation posses a nontrivial solution.)

An equation $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_p\mathbf{v}_p = \mathbf{0}$, with at least one $c_i \neq 0$, is called a **linear dependence relation**.

1/39

Three Theorems on Linear Independence

Theorem: The columns of a matrix A are linearly **independent** if and only if the homogeneous equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.

Theorem: If a set contains more vectors than there are entries in each vector, then the set is linearly **dependent**. That is, if $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ is a set of vector in \mathbb{R}^n , and p > n, then the set is linearly dependent.

Theorem: Any set of vectors that contains the zero vector is linearly **dependent**.

Determine if the set is linearly dependent or linearly independent

(a)
$$\left\{ \begin{bmatrix} 1\\2\\-1 \end{bmatrix}, \begin{bmatrix} 3\\3\\-5 \end{bmatrix}, \begin{bmatrix} 1\\1\\-1 \end{bmatrix}, \begin{bmatrix} 2\\3\\3 \end{bmatrix} \right\}$$

Hyperdent in \mathbb{R}^3 (4>3)

must be line dependent.

Determine if the set is linearly dependent or linearly independent

(b)
$$\left\{ \begin{bmatrix} 2\\2\\2\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 2\\4\\-8\\1 \end{bmatrix}, \right\}$$
Contains the zero vector!

The set is line dependent.

Section 1.8: Intro to Linear Transformations

Recall that the product $A\mathbf{x}$ is a linear combination of the columns of A—turns out to be a vector. If the columns of A are vectors in \mathbb{R}^m , and there are n of them, then

- ightharpoonup A is an $m \times n$ matrix,
- ▶ the product $A\mathbf{x}$ is defined for \mathbf{x} in \mathbb{R}^n , and
- the vector $\mathbf{b} = A\mathbf{x}$ is a vector in \mathbb{R}^m .

So we can think of A as an **object that acts** on vectors \mathbf{x} in \mathbb{R}^n (via the product $A\mathbf{x}$) to produce vectors \mathbf{b} in \mathbb{R}^m .

Transformation from \mathbb{R}^n to \mathbb{R}^m

Definition: A transformation T (a.k.a. **function** or **mapping**) from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector \mathbf{x} in \mathbb{R}^n a vector $T(\mathbf{x})$ in \mathbb{R}^m .

Function Notation: If a transformation T takes a vector \mathbf{x} in \mathbb{R}^n and maps it to a vector $T(\mathbf{x})$ in \mathbb{R}^m , we can write

$$T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$$

which reads "T maps \mathbb{R}^n into \mathbb{R}^m ."

And we can write

$$\vec{x} \mapsto T(\mathbf{x})$$

which reads "x maps to T of x."

Terms and Notation

For $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$,

- $ightharpoonup \mathbb{R}^n$ is the **domain**, and
- $ightharpoonup \mathbb{R}^m$ is called the **codomain**.
- For **x** in the domain, $T(\mathbf{x})$ is called the **image** of **x** under T. (We can call **x** a **pre-image** of $T(\mathbf{x})$.)
- The collection of all images is called the range.
- ▶ If $T(\mathbf{x})$ is defined by multiplication by the $m \times n$ matrix A, we may denote this by $\mathbf{x} \mapsto A\mathbf{x}$.

7/39

Matrix Transformation Example

Let
$$A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \\ 0 & -2 \end{bmatrix}$$
. Define the transformation $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ by the mapping $T(\mathbf{x}) = A\mathbf{x}$.

(a) Find the image of the vector $\mathbf{u} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$ under T.

$$T(\vec{a}) = A\vec{a} = \begin{bmatrix} 1 & 3 \\ 2 & 4 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \end{bmatrix} = \begin{bmatrix} 1-9 \\ 2-12 \\ 0+6 \end{bmatrix} = \begin{bmatrix} -8 \\ -10 \\ 6 \end{bmatrix}$$

$$A = \left[\begin{array}{cc} 1 & 3 \\ 2 & 4 \\ 0 & -2 \end{array} \right]$$

(b) Determine a vector \mathbf{x} in \mathbb{R}^2 whose image under T is $\begin{bmatrix} -4 \\ -4 \\ 4 \end{bmatrix}$.

We seek a solution \mathbf{x} to $\mathbf{T}(\mathbf{x}) = \begin{bmatrix} -4 \\ -4 \\ 4 \end{bmatrix}$.

we seek a solution
$$\vec{X}$$
 to $T(\vec{X}) = \begin{bmatrix} -4 \\ -4 \end{bmatrix}$
Solve $A\vec{X} = \vec{b}$ for $\vec{b} = \begin{bmatrix} -4 \\ -4 \end{bmatrix}$.

Using an oughented matrix

$$\begin{bmatrix} 1 & 3 & -4 \\ 2 & 4 & -4 \\ 0 & -2 & 4 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$

So a preimage
$$\vec{\chi} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$$
.

$$A = \left[\begin{array}{cc} 1 & 3 \\ 2 & 4 \\ 0 & -2 \end{array} \right]$$

(c) Determine if
$$\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
 is in the range of T .

Consistent?

The system is in consistent.

[1] is not in the range of T.

Linear Transformations

Definition: A transformation *T* is **linear** provided

- (i) $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for every \mathbf{u}, \mathbf{v} in the domain of T, and
- (ii) $T(c\mathbf{u}) = cT(\mathbf{u})$ for every scalar c and vector \mathbf{u} in the domain of T.

Every matrix transformation (e.g. $\mathbf{x} \mapsto A\mathbf{x}$) is a linear transformation. And it turns out that every linear transformation from \mathbb{R}^n to \mathbb{R}^m can be expressed in terms of matrix multiplication.

A Theorem About Linear Transformations:

If T is a linear transformation, then $T(\mathbf{0}) = \mathbf{0},$

$$T(c\mathbf{u}+d\mathbf{v})=cT(\mathbf{u})+dT(\mathbf{v})$$

for scalars c, d and vectors \mathbf{u} . \mathbf{v} .

And in fact

$$T(c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \cdots + c_k\mathbf{u}_k) = c_1T(\mathbf{u}_1) + c_2T(\mathbf{u}_2) + \cdots + c_kT(\mathbf{u}_k).$$

Example

Let *r* be a nonzero scalar. The transformation $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ defined by

$$T(\mathbf{x}) = r\mathbf{x}$$

is a linear transformation¹.

Show that T is a linear transformation.

That I is a linear transformation.

We must show that
$$T(\vec{x}+\vec{y})=T(\vec{x})+T(\vec{y})$$

and $T(c\vec{x})=cT(\vec{x})$.

Let \vec{x} , \vec{y} be in R^2 and C in R .

$$T(\vec{x}+\vec{y})=r(\vec{x}+\vec{y})=r\vec{x}+r\vec{y}=T(\vec{x})+T(\vec{y})$$

$$T(c\vec{u}) = r(c\vec{u}) = rc\vec{u} = cr\vec{u}$$
$$= c(r\vec{u}).$$

= c T(th).

So T satisfier both properties and is a linear transformation.

Figure: Geometry of dilation $\mathbf{x}\mapsto 2\mathbf{x}$. The 4 by 4 square maps to an 8 by 8 square.