January 31 Math 3260 sec. 55 Spring 2020

Section 1.7: Linear Independence
Definition: An indexed set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ in \mathbb{R}^{n} is said to be linearly independent if the vector equation

$$
x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots x_{p} \mathbf{v}_{p}=\mathbf{0}
$$

has only the trivial solution.
The set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ is said to be linearly dependent if there exists a set of weights $c_{1}, c_{2}, \ldots, c_{p}$ at least one of which is nonzero such that

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots c_{p} \mathbf{v}_{p}=\mathbf{0} .
$$

(i.e. Provided the homogeneous equation posses a nontrivial solution.)

An equation $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots c_{\rho} \mathbf{v}_{p}=\mathbf{0}$, with at least one $c_{i} \neq 0$, is called a linear dependence relation.

Three Theorems on Linear Independence

Theorem: The columns of a matrix A are linearly independent if and only if the homogeneous equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.

Theorem: If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. That is, if $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ is a set of vector in \mathbb{R}^{n}, and $p>n$, then the set is linearly dependent.

Theorem: Any set of vectors that contains the zero vector is linearly dependent.

Determine if the set is linearly dependent or linearly independent
(a) $\left\{\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{c}3 \\ 3 \\ -5\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 3\end{array}\right]\right\}$ 4 vectors in $\mathbb{R}^{3} \quad(4>3)$ must be lin. dependent.

Determine if the set is linearly dependent or linearly independent
(b) $\left\{\left[\begin{array}{l}2 \\ 2 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}2 \\ 4 \\ -8 \\ 1\end{array}\right],\right\}$

Contains the zero vector!
The set is lin. dependent.

Section 1.8: Intro to Linear Transformations

Recall that the product $\boldsymbol{A x}$ is a linear combination of the columns of A-turns out to be a vector. If the columns of A are vectors in \mathbb{R}^{m}, and there are n of them, then

- A is an $m \times n$ matrix,
- the product $A \mathbf{x}$ is defined for \mathbf{x} in \mathbb{R}^{n}, and
- the vector $\mathbf{b}=A \mathbf{x}$ is a vector in \mathbb{R}^{m}.

So we can think of A as an object that acts on vectors \mathbf{x} in \mathbb{R}^{n} (via the product $A \mathbf{x}$) to produce vectors \mathbf{b} in \mathbb{R}^{m}.

Transformation from \mathbb{R}^{n} to \mathbb{R}^{m}

Definition: A transformation T (a.k.a. function or mapping) from \mathbb{R}^{n} to \mathbb{R}^{m} is a rule that assigns to each vector \mathbf{x} in \mathbb{R}^{n} a vector $T(\mathbf{x})$ in \mathbb{R}^{m}.

Function Notation: If a transformation T takes a vector \mathbf{x} in \mathbb{R}^{n} and maps it to a vector $T(\mathbf{x})$ in \mathbb{R}^{m}, we can write

$$
T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}
$$

which reads " T maps \mathbb{R}^{n} into \mathbb{R}^{m}."
And we can write

$$
\vec{x} \mapsto T(\mathbf{x})
$$

which reads "x maps to T of \mathbf{x}."

Terms and Notation

For $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$,

- \mathbb{R}^{n} is the domain, and
$\checkmark \mathbb{R}^{m}$ is called the codomain.
- For \mathbf{x} in the domain, $T(\mathbf{x})$ is called the image of \mathbf{x} under T. (We can call \mathbf{x} a pre-image of $T(\mathbf{x})$.)
- The collection of all images is called the range.
- If $T(\mathbf{x})$ is defined by multiplication by the $m \times n$ matrix A, we may denote this by $\mathbf{x} \mapsto A \mathbf{x}$.

Matrix Transformation Example Let $A=\left[\begin{array}{cc}1 & 3 \\ 2 & 4 \\ 0 & -2\end{array}\right]$. Define the transformation $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}$ by the mapping $T(\mathbf{x})=A \mathbf{x}$.
(a) Find the image of the vector $\mathbf{u}=\left[\begin{array}{c}1 \\ -3\end{array}\right]$ under T.

$$
T(\vec{u})=A \vec{u}=\left[\begin{array}{cc}
1 & 3 \\
2 & 4 \\
0 & -2
\end{array}\right]\left[\begin{array}{c}
1 \\
-3
\end{array}\right]=\left[\begin{array}{c}
1-9 \\
2-12 \\
0+6
\end{array}\right]=\left[\begin{array}{c}
-8 \\
-10 \\
6
\end{array}\right]
$$

$$
A=\left[\begin{array}{cc}
1 & 3 \\
2 & 4 \\
0 & -2
\end{array}\right]
$$

(b) Determine a vector \mathbf{x} in \mathbb{R}^{2} whose image under T is $\left[\begin{array}{c}-4 \\ -4 \\ 4\end{array}\right]$. we sock a solution \vec{x} to $T(\vec{x})=\left[\begin{array}{c}-4 \\ -4 \\ 4\end{array}\right]$.
Solve $A \vec{x}=\vec{b}$ for $\vec{L}=\left[\begin{array}{c}-4 \\ -4 \\ 4\end{array}\right]$.
Using an augmented matrix

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 3 & -4 \\
2 & 4 & -4 \\
0 & -2 & 4
\end{array}\right] \xrightarrow{\text { ref }}\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right] } \\
& x_{1}=2 \\
& x_{2}=-2
\end{aligned}
$$

So a preimage $\vec{x}=\left[\begin{array}{c}2 \\ -2\end{array}\right]$.

$$
A=\left[\begin{array}{cc}
1 & 3 \\
2 & 4 \\
0 & -2
\end{array}\right]
$$

(c) Determine if $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ is in the range of T.

$$
\text { Is } T(\vec{x})=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \text { solvobee, i.e. is } A \vec{x}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

consistent?
Using an augmented matrix

$$
\left[\begin{array}{ccc}
1 & 3 & 1 \\
2 & 4 & 0 \\
0 & -2 & 1
\end{array}\right] \xrightarrow{\text { ref }}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

The system is in consistent. $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is nor in the case of T.

Linear Transformations

Definition: A transformation T is linear provided
(i) $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$ for every \mathbf{u}, \mathbf{v} in the domain of T, and
(ii) $T(c \mathbf{u})=c T(\mathbf{u})$ for every scalar c and vector \mathbf{u} in the domain of T.

Every matrix transformation (e.g. $\mathbf{x} \mapsto A \mathbf{x}$) is a linear transformation. And it turns out that every linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m} can be expressed in terms of matrix multiplication.

A Theorem About Linear Transformations:

If T is a linear transformation, then

$$
T(\mathbf{0})=\mathbf{0},
$$

$$
T(c \mathbf{u}+d \mathbf{v})=c T(\mathbf{u})+d T(\mathbf{v})
$$

for scalars c, d and vectors u.v.
And in fact

$$
T\left(c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{k} \mathbf{u}_{k}\right)=c_{1} T\left(\mathbf{u}_{1}\right)+c_{2} T\left(\mathbf{u}_{2}\right)+\cdots+c_{k} T\left(\mathbf{u}_{k}\right) .
$$

Example
Let r be a nonzero scalar. The transformation $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ defined by

$$
T(\mathbf{x})=r \mathbf{x}
$$

is a linear transformation ${ }^{1}$.
Show that T is a linear transformation.
we rust show that $T(\vec{u}+\vec{v})=T(\vec{u})+T(\vec{v})$
and

$$
T(c \vec{u})=c T(\vec{u})
$$

Let \vec{u}, \vec{v} be in \mathbb{R}^{2} and c in \mathbb{R}.

$$
T(\vec{u}+\vec{v})=r(\vec{u}+\vec{v})=r \vec{u}+r \vec{v}=T(\vec{u})+T(\vec{v})
$$

${ }^{1}$ It's called a contraction if $0<r<1$ and a dilation when $r>1$
January 29, $2020 \quad 15 / 39$

$$
\begin{aligned}
T(c \vec{u})=r(c \vec{u}) & =r c \vec{u}=c r \vec{u} \\
& =c(r \vec{u}) . \\
& =c T(\vec{u}) .
\end{aligned}
$$

So T satisfies both properties and is o linear trans formation.

Figure: Geometry of dilation $\mathbf{x} \mapsto \mathbf{2 x}$. The 4 by 4 square maps to an 8 by 8 square.

