Jan. 5 Math 2254H sec 015H Spring 2015

Section 6.1: Inverse Functions

Definition: A function f is called one-to-one if

$$
x_{1} \neq x_{2} \quad \text { implies } \quad f\left(x_{1}\right) \neq f\left(x_{2}\right) .
$$

A one-to-one function can't take on the same value twice!
e.g. $f(x)=x^{2}$ is NOT one-to-one because $f(1)=f(-1)$ even though $1 \neq-1$.
e.g. $f(x)=x^{3}$ IS one-to-one because the only way $x_{1}^{3}=x_{2}^{3}$ is if $x_{1}=x_{2}$.

Horizontal Line Test

A function f is one-to-one if and only if no horizontal line intersects the graph $y=f(x)$ more than one time.

Recall that the vertical line test tells if a graph is that of a function. The horizontal line test can be used to tell if the graph of a function is that of a $1: 1$ function.

Graphically: One to one functions pass the Horizontal Line Test

Figure: A function that is NOT $1: 1$ (left) and one that is $1: 1$ (right).

Theorem on one to one functions:

Theorem: If f is differentiable on an interval I, and $f^{\prime}(x)>0$ for all x in I, then f is one to one on I.

Question: If we change the condition $f^{\prime}(x)>0$ to read $f^{\prime}(x)<0$, can we still conclude that f would be 1:1?

Con f be one to one but have

$$
\begin{aligned}
f^{\prime}\left(x_{0}\right)=0 & \text { for sore } x_{0} \\
& \text { yes, take } f(x)=x^{3}
\end{aligned}
$$

Exercise: Prove the previous theorem by contradition.

Proof: Suppose $f^{\prime}(x)>0$ on on in tervel I. Also assume that f is not $l i 1$ on I.

Then there exist two number $a \neq b$ in I such that $f(a)=f(b)$. Assume $a<b$.

Note f is continuous on $[a, b]$ and differentiable on (a, b). By Rule's theorem
there exists a number C in (a, b) such that $f^{\prime}(c)=0$. But $f^{\prime}(c)>0$ by our hypothesis. It rust hold that no such a and b exist!

Inverse Functions

Definition: Let f be a one-to-one function with domain A and range B. Then f has an inverse function $f^{-1}(x)$ defined by

$$
f^{-1}(y)=x \quad \text { if and only if } f(x)=y .
$$

Remarks: (1) The domain of f^{-1} is B (the range of f).
(2) The range of f^{-1} is A (the domain of f).
(3) The notation f^{-1} does not mean "reciprocal".
(4) The following relationships hold:

$$
\begin{gathered}
f\left(f^{-1}(x)\right)=x \quad \text { for each } x \text { in } B, \text { and } \\
f^{-1}(f(x))=x \quad \text { for each } x \text { in } A .
\end{gathered}
$$

Example
Identify the range and find the inverse function f^{-1}. Verify one of the properties in (4), for

$$
f(x)=x^{2}+6 x, \quad \text { where } \quad A=\{x \mid x \geq-3\}
$$

$$
f(-3)=9-18=-9
$$

The range is

$$
\{y \mid y \geqslant-9\}
$$

Find f^{-1} : Set $y=f(x)$

- Solve for x
- Swap vanictle names $x \longleftrightarrow y$

$$
\begin{aligned}
y=x^{2}+6 x \quad, \quad x \geqslant-3 \quad y \geqslant-9 \\
y=x^{2}+6 x+9-9 \Rightarrow \quad y+9=(x+3)^{2} \\
\Rightarrow \quad x+3=\sqrt{y+9} \quad \text { or } \quad x+3=-\sqrt{y+9} \\
x=\sqrt{y+9}-3 \quad \text { or } \quad x=-\sqrt{y+9}-3 \\
\quad \begin{array}{l}
\text { liminate } \\
\quad \sin u \\
\end{array} \quad x \geqslant-3
\end{aligned}
$$

Sucp vanicble nomes

$$
y=\sqrt{x+9}-3 \quad \text { This defines } f^{-1}
$$

$$
f^{-1}(x)=\sqrt{x+9}-3, \quad x \geqslant-9
$$

$$
f(x)=x^{2}+6 x, \quad x \geqslant-3
$$

Composition 1

$$
\begin{aligned}
f^{-1}(f(x)) & =f^{-1}\left(x^{2}+6 x\right) \\
& =\sqrt{x^{2}+6 x+9}-3 \\
& =\sqrt{(x+3)^{2}}-3 \\
& =|x+3|-3, \quad x \geqslant-3 \Rightarrow|x+3|=x+3 \\
& =x+3-3=x \quad \text { as required } .
\end{aligned}
$$

