Jan. 6 Math 2254H sec 015H Spring 2015

Section 6.1: Inverse Functions

Definition: A function f is called one-to-one if
$x_{1} \neq x_{2} \quad$ implies $\quad f\left(x_{1}\right) \neq f\left(x_{2}\right)$.

Definition: Let f be a one-to-one function with domain A and range B. Then f has an inverse function $f^{-1}(x)$ defined by

$$
f^{-1}(y)=x \quad \text { if and only if } \quad f(x)=y
$$

Figure: The graph of f^{-1} is the reflection of the graph of f in the line $y=x$.

Continuity and Differentiability

Theorem: If f is one-to-one and continuous on an interval, then its inverse f^{-1} is continuous.

Inverses of continuous functions are continuous.

Next: Let f be $1: 1$ with inverse f^{-1} and suppose

$$
f(b)=a \quad \text { i.e. } \quad f^{-1}(a)=b .
$$

Theorem: If f is differentiable at b, and $f^{\prime}(b) \neq 0$, then f^{-1} is differentiable at a and

$$
\left(f^{-1}\right)^{\prime}(a)=\frac{1}{f^{\prime}(b)} .
$$

Example
Consider

$$
f(x)=x^{2}+6 x, \quad x \geq-3 \quad \text { with } \quad f^{-1}(x)=\sqrt{x+9}-3, x \geq-9
$$

Evaluate the two derivatives

$$
\begin{aligned}
& f^{\prime}(1), \text { and }\left(f^{-1}\right)^{\prime}(7) . \\
& f(1)=1^{2}+6 \cdot 1=7 \\
& f^{\prime}(x)=2 x+6, \\
& \left(f^{-1}\right)^{\prime}(x)=\frac{1}{2}(x+9) \\
& \left(f^{-1}\right)^{\prime}(x)=\frac{1}{2 \sqrt{x+9}}
\end{aligned}
$$

$$
f^{\prime}(1)=2 \cdot 1+6=8, \quad\left(f^{-1}\right)^{\prime}(7)=\frac{1}{2 \sqrt{7+9}}=\frac{1}{2 \sqrt{16}}=\frac{1}{8}
$$

Plausibility Argument
Suppose $f^{\prime}(x) \neq 0$, and consider the fact that $f^{-1}(f(x))=x$. Use implicit differentiation to conclude that

$$
\begin{aligned}
& \left(f^{-1}\right)^{\prime}(f(x))=\frac{1}{f^{\prime}(x)} . \\
& f^{-1}(f(x))=x \quad \text { Take } \frac{d}{d x} \text { of but sides } \\
& \frac{d}{d x}\left[f^{-1}(f(x))\right]=\frac{d}{d x}[x] \\
& \left(f^{-1}\right)^{\prime}(f(x)) f^{\prime}(x)=1
\end{aligned}
$$

$$
\Rightarrow \quad\left(f^{-1}\right)^{\prime}(f(x))=\frac{1}{f^{\prime}(x)}
$$

Example

$$
\left(f^{-1}\right)^{\prime}(a)=\frac{1}{f^{\prime}(b)} \text { for } f(b)=a
$$

$f(x)=x^{3}+3 \sin x+2 \cos x . \quad$ Find $\left(f^{-1}\right)^{\prime}(2)$.
Need b such that $f(b)=2$

$$
2=b^{3}+3 \sin (6)+2 \cos (b) \Rightarrow b=0
$$

by observation

$$
f^{\prime}(x)=3 x^{2}+3 \cos x-2 \sin x
$$

(It's not necessarily obvious, but f is one-to-one.)

$$
\begin{array}{r}
f^{\prime}(0)=3 \cdot 0^{2}+3 \cos (0)-2 \sin (0)=3 \\
\left(f^{-1}\right)(2)=\frac{1}{f^{\prime}(0)}=\frac{1}{3}
\end{array}
$$

Example
$\left(f^{-1}\right)^{\prime}(a)=\frac{1}{f^{\prime}(b)}$ for $f(b)=a$ $f(x)=\int_{3}^{x} 4^{t} d t . \quad$ Find $\left(f^{-1}\right)^{\prime}(0)$.

Need b such that $f(b)=0$

$$
\begin{aligned}
0 & =\int_{3}^{b} y^{t} d t \Rightarrow b=3 \\
f^{\prime}(x) & =\frac{d}{d x} \int_{3}^{x} y^{t} d t=4^{x}
\end{aligned}
$$

$$
\begin{aligned}
& f^{\prime}(3)=4^{3}=64 \\
& \quad\left(f^{-1}\right)^{\prime}(0)=\frac{1}{f^{\prime}(3)}=\frac{1}{64}
\end{aligned}
$$

Section 6.2*: The Natural Logarithm

We know that

$$
\int x^{n} d x=\frac{x^{n+1}}{n+1}+C
$$

provided $n \neq-1$. But we have yet to know how to understand

$$
\int \frac{1}{x} d x
$$

We begin with a definite integral.

Definition of the Natural Logarithm

Let $x>0$. The natural logarithm of x is denoted and define by

$$
\ln x=\int_{1}^{x} \frac{1}{t} d t
$$

By the Fundamental Theorem of Calculus, we immediately get

$$
\frac{d}{d x} \ln x=\frac{1}{x}
$$

Also, $\ln (1)=\int_{1}^{1} \frac{d t}{t}=0$.

A Geometric Interpretation of the Nature Logarithm

Figure: $\ln (1)=0, \ln (x)$ is positive for $x>1$ and $\ln (x)$ is negative for $0<x<1$.

Properties of The Natural Log

Let x and y be positive real numbers and r be a rational number.

$$
\text { (1) } \quad \ln (x y)=\ln x+\ln y, \quad \text { (2) } \quad \ln \left(\frac{x}{y}\right)=\ln x-\ln y, \quad \text { and }
$$

(3) $\ln \left(x^{r}\right)=r \ln x$.

Example: Expand the expression $\ln \left[\frac{\left(x^{3}+2 x\right)^{4} \cos (2 x)}{\sqrt{x} \sin x}\right]$
$=\ln \left[\left(x^{3}+2 x\right)^{4} \cos (2 x)\right]-\ln [\sqrt{x} \sin x]$

$$
\begin{aligned}
& =\ln \left(x^{3}+2 x\right)^{4}+\ln (\cos (2 x))-(\ln \sqrt{x}+\ln (\sin x)) \\
& =\ln \left(x^{3}+2 x\right)^{4}+\ln (\cos (2 x))-\ln x^{1 / 2}-\ln (\sin x) \\
& =4 \ln \left(x^{3}+2 x\right)+\ln (\cos (2 x))-\frac{1}{2} \ln x-\ln (\sin x)
\end{aligned}
$$

Properties of The Natural Log

$$
\lim _{x \rightarrow 0^{+}} \ln x=-\infty, \quad \text { and } \quad \lim _{x \rightarrow \infty} \ln x=\infty
$$

Figure: Plot of the natural log function.

Definition: The number e

$e \quad$ is the number such that $\ln e=1$

Figure: The number $e \approx 2.71828183$

Differentiation \& Integration Rules

$$
\begin{aligned}
& \text { (1) } \frac{d}{d x} \ln u=\frac{1}{u} \frac{d u}{d x} \text { i.e. } \frac{d}{d x} \ln f(x)=\frac{f^{\prime}(x)}{f(x)} \\
& \text { (2) } \frac{d}{d x} \ln |x|=\frac{1}{x} \text {, and } \\
& \text { (3) } \int \frac{d x}{x}=\ln |x|+C \\
& \text { If } x<0 \text {, then }|x|=-x \text {. So } \ln |x|=\ln (-x) \\
& \frac{d}{d x} \ln |x|=\frac{d}{d x} \ln (-x)=\frac{-1}{-x}=\frac{1}{x}
\end{aligned}
$$

Examples
Evaluate the derivative.
(a) $\frac{d}{d x} \ln \left(x^{7}+2 x^{3}+2\right)=\frac{7 x^{6}+6 x^{2}}{x^{7}+2 x^{3}+2}$
(b) $\frac{d}{d x} \ln (\sec x)=\frac{\sec x \tan x}{\sec x}=\tan x$

This implies $\int \tan x d x=\ln |\sec x|+C$

Evaluate
Set $u=x^{2}+5$
(a) $\int \frac{x}{x^{2}+5} d x$

$$
\begin{aligned}
& d u=2 x d x \\
& \frac{1}{2} d u=x d x
\end{aligned}
$$

$$
\begin{aligned}
& =\int \frac{\frac{1}{2} d u}{u} \\
& =\frac{1}{2} \int \frac{d u}{u}
\end{aligned}=\frac{1}{2} \ln |u|+C,
$$

