January 6 Math 3260 sec. 55 Spring 2020

A Random Motivational Example
In a certain city, $A B C$ shipping has one receiving (A) and two distribution hubs (B \& C). On a given day, 80 packages enter center A and will be distributed to hubs B and C for delivery. Twenty packages will go to a major client from hub C , the rest are to be distributed in quantities x_{1}, \ldots, x_{4} among the hubs and out for delivery.

Motivating Example

Figure: Distribution Scheme

Equations for Package Quantities

Assuming all of the packages are delivered to customers outside of the shipping company, the quantities x_{1}, \ldots, x_{4} have to satisfy the equations

$$
\begin{aligned}
x_{1}+x_{3} & =20 \\
x_{2}-x_{3}-x_{4} & =0 \\
x_{1}+x_{2} & =80
\end{aligned}
$$

Questions

- Is there a set of numbers x_{1}, \ldots, x_{4} that satisfy all of the equations?
- If there is a set of numbers, is it the only one?
- If we could find numbers x_{1}, \ldots, x_{4}, and then the input 80 changed (say on another day), do we have to do all the work again? Or is there a way to generalize our finding?
(This is just to illustrate the kinds of questions addressed by Linear Algebra. We'll leave answering these questions for another day.)

Section 1.1: Systems of Linear Equations

We begin with a linear (algebraic) equation in n variables $x_{1}, x_{2}, \ldots, x_{n}$ for some positive integer n.

A linear equation can be written in the form

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b
$$

The numbers a_{1}, \ldots, a_{n} are called the coefficients. These numbers and the right side b are real (or complex) constants that are known.

Examples of Equations that are or are not Linear

$$
\begin{array}{lll}
2 x_{1}=4 x_{2}-3 x_{3}+5 & \text { and } & 12-\sqrt{3}(x+y)=0 \\
2 x_{1}-4 x_{2}+3 x_{3}=5 & \sqrt{3} x+\sqrt{3} y=12
\end{array}
$$

A Linear System is a collection of linear equations in

 the same variables$$
\begin{aligned}
& 2 x_{1}+x_{2}-3 x_{3}+x_{4}=-3 \\
& -x_{1}+3 x_{2}+4 x_{3}-2 x_{4}=8
\end{aligned}
$$

$$
x+2 y+3 z=4
$$

$$
3 x \quad+12 z=0
$$

$$
2 x+2 y-5 z=-6
$$

Some terms

- A solution is a list of numbers $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ that reduce each equation in the system to a true statement upon substitution.
- A solutions set is the set of all possible solutions of a linear system.
- Two systems are called equivalent if they have the same solution set.

An Example

$$
\begin{gathered}
2 x-y=-1 \\
-4 x+2 y=2
\end{gathered}
$$

(a) Show that $(1,3)$ is a solution.
weill substitute $x=1$ and $y=3$
$1^{\text {st }}$ equation

$$
\begin{aligned}
2(1)-(3) & \stackrel{?}{=}-1 \\
2-3 & \stackrel{?}{=}-1 \\
-1 & =-1 \quad \text { an identity }
\end{aligned}
$$

$2^{\text {nd }}$ equation

$$
\begin{aligned}
& -4(1)+2(3) \stackrel{?}{=} 2 \\
& -4+6 \stackrel{?}{=} 2
\end{aligned}
$$

$$
z=2 \quad \text { aridentts! }
$$

So $(1,3)$ is a solution.

$$
x=1, \quad y=3
$$

An Example Continued

$$
\begin{aligned}
2 x-y & =-1 \\
-4 x+2 y & =2
\end{aligned}
$$

(b) Note that $\{(x, y) \mid y=2 x+1\}$ is the solution set.

Using substitution of $y=2 x+1$
st
equal

$$
\begin{aligned}
2 x-(2 x+1) & \stackrel{?}{=}-1 \\
2 x-2 x-1 & \stackrel{?}{=}-1 \\
-1 & =-1
\end{aligned}
$$

$2{ }^{20}$
equation

$$
\begin{aligned}
-4 x+2(2 x+1) & \stackrel{?}{=} 2 \\
-4 x+4 x+2 & \stackrel{?}{=} 2
\end{aligned}
$$

$$
2=2 \text { an identity. }
$$

So all (x, y) such that $y=2 x+1$ is a solution.

The Geometry of 2 Equations with 2 Variables

Figure: The system $x-y=-1$ and $2 x+y=3$ with solution set $\{(2 / 3,5 / 2)\}$. These equations represent lines that intersect at one point.

The Geometry of 2 Equations with 2 Variables

Figure: The system $x-y=-1$ and $2 x-2 y=-2$ with solution set $\{(x, y) \mid y=x+1\}$. Both equations represent the same line which share all common points as solutions.

The Geometry of 2 Equations with 2 Variables

Figure: The system $x-y=-1$ and $2 x-2 y=2$ with solution set \emptyset. These equations represent parallel lines having no common points.

