January 7 Math 2306 sec. 53 Spring 2019

Section 1: Concepts and Terminology

Suppose $y=\phi(x)$ is a differentiable function. We know that $d y / d x=\phi^{\prime}(x)$ is another (related) function.

For example, if $y=\cos (2 x)$, then y is differentiable on $(-\infty, \infty)$. In fact,

$$
\frac{d y}{d x}=-2 \sin (2 x) .
$$

Even $d y / d x$ is differentiable with $d^{2} y / d x^{2}=-4 \cos (2 x)$.

Suppose $y=\cos (2 x)$

Note that $\quad \frac{d^{2} y}{d x^{2}}+4 y=0$.

We know $y^{\prime \prime}=-4 \cos (2 x)$, so

$$
y^{\prime \prime}+4 y=-4 \cos (2 x)+4 \cos (2 x)=0
$$

A differential equation

The equation

$$
\frac{d^{2} y}{d x^{2}}+4 y=0
$$

is an example of a differential equation.

Questions: If we only started with the equation, how could we determine that $\cos (2 x)$ satisfies it? Also, is $\cos (2 x)$ the only possible function that y could be?

Definition

A Differential Equation is an equation containing the derivatives) of one or more dependent variables, with respect to one or more indendent variables.

Solving a differential equation refers to determining the dependent variable(s)-as functions).

Independent Variable: will appear as one that derivatives are taken with respect to.
\leftarrow function
Dependent Variable: will appear as one that derivatives are taken of.

$$
\frac{d y}{d x} \text { The derivative of the dependent variable } y
$$ with respect to the independent variable x

Independent and Dependent Variables

Often, the derivatives indicate which variable is which:

$$
\begin{aligned}
& \frac{d y}{d x} \\
& \text { xis dependent independent } \\
& \frac{d y}{d t} \text { implies } y=f(x)
\end{aligned}
$$

Classifications

Type: An ordinary differential equation (ODE) has exactly one independent variable ${ }^{1}$. For example

$$
\frac{d y}{d x}-y^{2}=3 x, \quad \text { or } \quad \frac{d y}{d t}+2 \frac{d x}{d t}=t, \quad \text { or } \quad y^{\prime \prime}+4 y=0
$$

A partial differential equation (PDE) has two or more independent variables. For example

$$
\frac{\partial y}{\partial t}=\frac{\partial^{2} y}{\partial x^{2}}, \quad \text { or } \quad \frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0
$$

${ }^{1}$ These are the subject of this course.

Classifications

Order: The order of a differential equation is the same as the highest order derivative appearing anywhere in the equation.

$$
\begin{array}{ll}
\frac{d y}{d x}-y^{2}=3 x & 1^{\text {st }} \text { order ODE } \\
y^{\prime \prime \prime}+\left(y^{\prime}\right)^{4}=x^{3} & 3^{r d} \text { order ODE } \\
\frac{\partial y}{\partial t}=\frac{\partial^{2} y}{\partial x^{2}} & 2^{n d} \text { order PDE }
\end{array}
$$

Notations and Symbols

We'll use standard derivative notations:
Leibniz: $\frac{d y}{d x}, \quad \frac{d^{2} y}{d x^{2}}, \ldots \frac{d^{n} y}{d x^{n}}, \quad$ or
Prime \& superscripts: $\quad y^{\prime}, \quad y^{\prime \prime}, \quad \ldots \quad y^{(n)}$.

Newton's dot notation may be used if the independent variable is time. For example if s is a position function, then
velocity is $\frac{d s}{d t}=\dot{s}, \quad$ and acceleration is $\frac{d^{2} s}{d t^{2}}=\ddot{s}$

Notations and Symbols

An $n^{\text {th }}$ order ODE, with independent variable x and dependent variable y can always be expressed as an equation

$$
F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0
$$

where F is some real valued function of $n+2$ variables.

Normal Form: If it is possible to isolate the highest derivative term, then we can write a normal form of the equation

$$
\frac{d^{n} y}{d x^{n}}=f\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right) .
$$

$$
\frac{d^{2} y}{d x^{2}}+4 y=0
$$

This is in the form $F\left(x, y, y^{\prime}, y^{\prime \prime}\right)=0$
where $F\left(x, y, y^{\prime}, y^{\prime \prime}\right)=y^{\prime \prime}+4 y$

In normed form, this is

$$
\frac{d^{2} y}{d x^{2}}=-4 y
$$

This looks like $\frac{d^{2} y}{d x^{2}}=f\left(x, y, y^{\prime}\right)$ where

$$
f\left(x, y, y^{\prime}\right)=-4 y
$$

Notations and Symbols

If $n=1$ or $n=2$, an equation in normal form would look like

$$
\frac{d y}{d x}=f(x, y) \quad \text { or } \quad \frac{d^{2} y}{d x^{2}}=f\left(x, y, y^{\prime}\right)
$$

Differential Form: A first order equation may appear in the form

$$
\underbrace{M(x, y) d x+N(x, y) d y}_{\text {this is } 0}=0
$$

$$
M(x, y) d x+N(x, y) d y=0
$$

Differential forms may be written in normal form in a couple of ways.
If $N(x, y) \neq 0$ (for relevant x and y), then we con write

$$
\begin{aligned}
N(x, y) d y & =-M(x, y) d x \\
\frac{d y}{d x} & =\frac{-M(x, y)}{N(x, y)}
\end{aligned}
$$

Similarly, it $n(x, y) \neq 0$ we could write

$$
\frac{d x}{d y}=-\frac{N(x, y)}{M(x, y)}
$$

