January 7 Math 2306 sec. 53 Spring 2019

Section 1: Concepts and Terminology

Suppose $y = \phi(x)$ is a differentiable function. We know that $dy/dx = \phi'(x)$ is another (related) function.

For example, if $y = \cos(2x)$, then y is differentiable on $(-\infty, \infty)$. In fact,

$$\frac{dy}{dx} = -2\sin(2x).$$

Even dy/dx is differentiable with $d^2y/dx^2 = -4\cos(2x)$.

Suppose $y = \cos(2x)$

Note that
$$\frac{d^2y}{dx^2} + 4y = 0.$$
We know
$$y'' = -4 \cos(2x), \text{ so}$$

$$y'' + 4y = -4 \cos(2x) + 4 \cos(2x) = 0$$

A differential equation

The equation

$$\frac{d^2y}{dx^2} + 4y = 0.$$

is an example of a differential equation.

Questions: If we only started with the equation, how could we determine that cos(2x) satisfies it? Also, is cos(2x) the only possible function that y could be?

Definition

A **Differential Equation** is an equation containing the derivative(s) of one or more dependent variables, with respect to one or more indendent variables.

Solving a differential equation refers to determining the dependent variable(s)—as function(s).

Independent Variable: will appear as one that derivatives are taken with respect to.

Dependent Variable: will appear as one that derivatives are taken of.

dy The derivative of the dependent variable of with respect to the independent variable x.

Independent and Dependent Variables

Often, the derivatives indicate which variable is which:

$$\frac{du}{dt} \leftarrow \frac{dv}{dr} \frac{dx}{dr}$$

5 / 49

Classifications

Type: An **ordinary differential equation (ODE)** has exactly one independent variable¹. For example

$$\frac{dy}{dx} - y^2 = 3x$$
, or $\frac{dy}{dt} + 2\frac{dx}{dt} = t$, or $y'' + 4y = 0$

A partial differential equation (PDE) has two or more independent variables. For example

$$\frac{\partial y}{\partial t} = \frac{\partial^2 y}{\partial x^2}, \quad \text{or} \quad \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0$$

6 / 49

¹These are the subject of this course.

Classifications

Order: The order of a differential equation is the same as the highest order derivative appearing anywhere in the equation.

$$\frac{dy}{dx} - y^2 = 3x$$

$$y''' + (y')^4 = x^3$$

$$\frac{\partial y}{\partial t} = \frac{\partial^2 y}{\partial x^2}$$

$$3^{rd} \text{ order ODE}$$

$$2^{rd} \text{ order PDE}$$

Notations and Symbols

We'll use standard derivative notations:

Leibniz:
$$\frac{dy}{dx}$$
, $\frac{d^2y}{dx^2}$, ... $\frac{d^ny}{dx^n}$, or

Prime & superscripts: y', y'', ... $y^{(n)}$.

Newton's **dot notation** may be used if the independent variable is time. For example if s is a position function, then

velocity is
$$\frac{ds}{dt} = \dot{s}$$
, and acceleration is $\frac{d^2s}{dt^2} = \ddot{s}$

Notations and Symbols

An n^{th} order ODE, with independent variable x and dependent variable y can always be expressed as an equation

$$F(x,y,y',\ldots,y^{(n)})=0$$

where F is some real valued function of n + 2 variables.

Normal Form: If it is possible to isolate the highest derivative term, then we can write a **normal form** of the equation

$$\frac{d^n y}{dx^n} = f(x, y, y', \dots, y^{(n-1)}).$$

$$\frac{d^2y}{dx^2} + 4y = 0$$

This is in the form F(x,y,y',y')=0where F(x,y,y',y'')=y''+4y

In normal form, this is
$$\frac{d^2y}{dy} = -4y$$

This looks like $\frac{d^2y}{dx^2} = f(x, y, y')$ where f(x, y, y') = -4y

Notations and Symbols

If n = 1 or n = 2, an equation in normal form would look like

$$\frac{dy}{dx} = f(x, y)$$
 or $\frac{d^2y}{dx^2} = f(x, y, y')$.

Differential Form: A first order equation may appear in the form

$$M(x,y) dx + N(x,y) dy = 0$$
this is a form

$$M(x, y) dx + N(x, y) dy = 0$$

Differential forms may be written in normal form in a couple of ways.

If
$$N(x,y) \neq 0$$
 (for relevant $x \text{ and } y$), then we can write $N(x,y) dy = -N(x,y) dx$

$$\frac{dy}{dx} = \frac{-M(x,y)}{N(x,y)}$$
Similarly, if $N(x,y) \neq 0$ we could write
$$\frac{dx}{dy} = \frac{-N(x,y)}{N(x,y)}$$

January 2, 2019 12 / 49