January 8 MATH 1112 sec. 54 Spring 2020

Relations \& Functions

Given two sets of objects, we can define a relation on these sets.

Definition: A relation is a correspondence between a first set, called the domain, and a second set, called the range.

We can call a relation a mapping as it assigns (maps) one or more range elements to a domain element.

Examples: Relation in x and y

A relation is a set of ordered pairs, (x, y). The set of x values is the domain, and the set of y values is the range.

Example 1: Identify the domain and range of

$$
\{(0,0),(1,-1),(1,1),(4,2)\}
$$

Domain:

$$
\text { Set of } 1^{\text {st }} \text { elements }
$$

$$
\{0,1,4\}
$$

Range:

$$
\begin{gathered}
\text { Set of } 2^{\text {nd }} \text { elements } \\
\{-1,0,1,2\}
\end{gathered}
$$

Examples: Relation in x and y

Example 2: Identify the domain and range of

$$
\{(-1,1),(0,0),(1,1),(2,4)\}
$$

Domain:

$$
\{-1,0,1,2\}
$$

Range:

$$
\{0,1,4\}
$$

Notice that no two ordered pairs in this relation have the same x-value. This is an example of a function.

Definition: A function on two sets is a relation in which each element of the domain corresponds to exactly one element in the range.

Question \longleftarrow (indicates a clicker poll)

A function is a relation.
(a) True
(b) False
(c) I think it's true, but I'm not sure.
(d) I think it's false, but I'm not sure.

Question

Which (if any) of the following relations is a function?
(a) $\{(0,0),(1,1),(2,2)\}$
(b) $\{(0,1),(0,2),(0,3)\}$
(c) $\{(1,3),(-1,3),(7,7),(0,7)\}$
(d) (a) and (c)
(e) none of the above

Function Notation: Some Preliminary Remarks

- We will use a variable character to represent domain elements-usually x (but not always).
- We will use a variable character to represent corresponding range elements—usually y (again, we're not married to y).
- We assign a character name to our functions as well using specific notation-often we use f, sometime g, h or something else.

Function Notation: Some Preliminary Remarks

- The domain and range are not always stated explicitly, but we can often infer them.
- Reading, writing, and using function notation properly is one of the most critical skills focused on in this class.

Function Notation: An example

Consider the equation $y=3 x-4$. It defines a set of points

$$
(x, y)=(x, 3 x-4)
$$

where x and y are elements of the set of real ${ }^{1}$ numbers \mathbb{R}.

The equation $y=3 x-4$ defines a function. Let's call this function f. We can express this in function notation as

$$
f(x)=3 x-4
$$

In English, this reads as
f of x equals three x minus 4 .
${ }^{1}$ The symbol \mathbb{R} denotes the set of all real number.

Function Notation: An example

$$
\text { Let } f(x)=3 x-4, \quad \text { and suppose } \quad y=f(x)
$$

- In $f(x), f$ is the function and x is its argument.
- x represents an element of the domain, $f(x)$ is an element of the range.
- Since $y=f(x), x$ is called the independent variable and y is called the dependent variable.
- $y=f(x)$ reads " y equals f of x "
- The collection of points $(x, f(x))$, for each x in the domain, is called the graph of f.

Example
Consider the function f defined by $f(x)=-x^{2}+2 x+4$. Evaluate each of the following.
(a) $f(-2)=-(-2)^{2}+2(-2)+4=-4-4+4=-4$

* $-2^{2}=-4$ and $(-2)^{2}=4$
(b) $f(3 a)=-(3 a)^{2}+2(3 a)+4=-9 a^{2}+6 a+4$
(c) $f(x+h)=-(x+h)^{2}+2(x+h)+4=-\left(x^{2}+2 x h+h^{2}\right)+2 x+2 h+4$

$$
=-x^{2}-2 x h-h^{2}+2 x+2 h+4
$$

Question

Let $f(x)=-x^{2}+2 x+4$. Evaluate $\quad f(3)$.
(a) $f(3)=1$

$$
-9+6+4=2
$$

(b) $f(3)=7$
(c) $f(3)=-3$
(d) $f(3)=19$

Question

Let $f(x)=-x^{2}+2 x+4$. Evaluate $f(-b)$.
(a) $f(-b)=-3 b+4$
$=-(-b)^{2}+2(-b)+4$
(b) $f(-b)=-b^{2}+2 b+4$

$$
=-b^{2}-2 b+4
$$

(c) $f(-b)=b^{2}-2 b+4$
(d) $f(-b)=-b^{2}-2 b+4$

