Jan. 8 Math 2254H sec 015H Spring 2015

Section 6.2*: The Natural Logarithm

Definition: Let $x>0$. The natural logarithm of x is denoted and defined by

$$
\ln x=\int_{1}^{x} \frac{1}{t} d t
$$

We determined that

- $\ln (1)=0$,
- $\ln (x)>0$ for $x>1$,
- $\ln (x)<0$ for $0<x<1$, and
- $\frac{d}{d x} \ln (x)=\frac{1}{x}$

Properties of The Natural Log

$$
\lim _{x \rightarrow 0^{+}} \ln x=-\infty, \quad \text { and } \quad \lim _{x \rightarrow \infty} \ln x=\infty
$$

Figure: Plot of the natural log function.

Properties of The Natural Log

Let x and y be positive real numbers and r be a rational number.

$$
\begin{aligned}
& \text { (1) } \ln (x y)=\ln x+\ln y, \\
& \text { (2) } \ln \left(\frac{x}{y}\right)=\ln x-\ln y, \quad \text { and } \\
& \text { (3) } \ln \left(x^{r}\right)=r \ln x .
\end{aligned}
$$

Differentiation \& Integration Rules

$$
\begin{aligned}
& \text { (1) } \frac{d}{d x} \ln u=\frac{1}{u} \frac{d u}{d x} \quad \text { i.e. } \quad \frac{d}{d x} \ln f(x)=\frac{f^{\prime}(x)}{f(x)} \\
& \text { (2) } \frac{d}{d x} \ln |x|=\frac{1}{x}, \quad \text { and }
\end{aligned}
$$

(3) $\int \frac{d x}{x}=\ln |x|+C, \quad$ in general $\int \frac{d u}{u}=\ln |u|+C$

Examples
(b)

$$
\begin{aligned}
& \int_{e}^{e^{2}} \frac{\ln x}{x} d x=\int_{e}^{e^{2}}(\ln x) \frac{1}{x} d x \\
& u=\ln x \\
& d u=\frac{1}{x} d x \\
& \text { whon } x=e \\
& =\int_{1}^{2} u d u \\
& =\left.\frac{u^{2}}{2}\right|_{1} ^{2} \\
& =\frac{2^{2}}{2}-\frac{1^{2}}{2}=2-\frac{1}{2}=\frac{3}{2}
\end{aligned}
$$

(c)

$$
\begin{aligned}
\int \cot x d x & =\int \frac{\cos x}{\sin x} d x \\
& =\int \frac{d n}{n} \\
& =\ln |n|+C \\
& =\ln |\sin x|+C
\end{aligned}
$$

$$
\begin{aligned}
u & =\sin x \\
d u & =\cos x d x
\end{aligned}
$$

New Integration Rules

$$
\begin{gathered}
\int \tan x d x=-\ln |\cos x|+C=\ln |\sec x|+C \\
\int \cot x d x=\ln |\sin x|+C=-\ln |\csc x|+C \\
\int \sec x d x=\ln |\sec x+\tan x|+C \\
\int \csc x d x=-\ln |\csc x+\cot x|+C
\end{gathered}
$$

$$
\int \sec x d x=\ln |\sec x+\tan x|+C
$$

Multiply the integrand by

$$
1=\frac{\sec x+\tan x}{\sec x+\tan x}
$$

$$
\int \sec x d x=\int \sec x\left(\frac{\sec x+\tan x}{\sec x+\tan x}\right) d x
$$

$$
=\int \frac{\sec ^{2} x+\sec x \tan x}{\sec x+\tan x} d x
$$

let

$$
\begin{gathered}
u=\sec x+\tan x \\
d u=\left(\sec x \tan x+\sec ^{2} x\right) d x
\end{gathered}
$$

$$
\begin{aligned}
=\int \frac{d u}{u} & =\ln |u|+C \\
& =\ln |\sec x+\tan x|+C
\end{aligned}
$$

Logarithmic Differentiation
Use the logarithm to evaluate $\frac{d y}{d x}$. Assume that $y>0$ if necessary.

$$
y=\frac{\left(x^{3}+2 x\right)^{3} \sin x}{\sqrt[3]{x} \cos ^{2} x}
$$

Note: $\frac{d}{d x} \ln y=\frac{\frac{d y}{d x}}{y}$

$$
\text { ie. } \frac{d y}{d x}=y \frac{d}{d x} \ln y
$$

Take the log

$$
\begin{aligned}
\ln y & =\ln \left(\frac{\left(x^{3}+2 x\right)^{3} \sin x}{x^{1 / 3} \cos ^{2} x}\right) \\
& =3 \ln \left(x^{3}+2 x\right)+\ln \sin x-\frac{1}{3} \ln x-2 \ln \cos x
\end{aligned}
$$

Talu $\frac{d}{d x}$ of buth sideo

$$
\begin{aligned}
& \frac{1}{y} \frac{d y}{d x}=3 \frac{3 x^{2}+2}{x^{3}+2 x}+\frac{\cos x}{\sin x}-\frac{1}{3} \frac{1}{x}-2\left(\frac{-\sin x}{\cos x}\right) \\
& \frac{1}{y} \frac{d y}{d x}=\frac{9 x^{2}+6}{x^{3}+2 x}+\cot x-\frac{1}{3 x}+2 \tan x \\
& \Rightarrow \frac{d y}{d x}=\frac{\left(x^{3}+2 x\right)^{3} \sin x}{\sqrt[3]{x} \cos ^{2} x}\left(\frac{9 x^{2}+6}{x^{3}+2 x}+\cot x-\frac{1}{3 x}+2 \tan x\right)
\end{aligned}
$$

Section 6.3* The Natural Exponential Function

Remark: The natural logarithm is a one-to-one function.
Definition: The exponential function is the inverse of the natural logarithm. It is denoted by

$$
\exp (x) \text { or } e^{x}
$$

and defined by

$$
\exp (x)=y \text { if and only if } x=\ln y .
$$

Relationship between $\ln x$ and $\exp x$

- In x has domain $(0, \infty)$ and range $(-\infty, \infty)$
- exp x has domain $(-\infty, \infty)$ and range $(0, \infty)$
- $\exp (\ln x)=x$ for all $x>0$ and $\ln (\exp x)=x$ for all x
- Since $\ln x \rightarrow-\infty$ as $x \rightarrow 0^{+}$we have

$$
\lim _{x \rightarrow-\infty} \exp (x)=0
$$

- and since $\ln x \rightarrow \infty$ as $x \rightarrow \infty$ we have

$$
\lim _{x \rightarrow \infty} \exp (x)=\infty
$$

Figure: The graph of $y=e^{x}$ (with graph of $y=\ln x$ for comparison).

Laws of Exponents

Let x and y be real and r rational. Then

$$
\begin{gathered}
\text { (1) } e^{x+y}=e^{x} e^{y}, \quad \text { (2) } \quad e^{x-y}=\frac{e^{x}}{e^{y}}, \quad \text { and } \\
\text { (3) } \quad\left(e^{x}\right)^{r}=e^{r x} .
\end{gathered}
$$

Differentiation Rule ${ }^{1}$

$$
\frac{d}{d x} e^{x}=e^{x}, \quad \text { so that } \quad \frac{d}{d x} e^{u}=e^{u} \frac{d u}{d x}
$$

${ }^{1}$ The function $f(x)=e^{x}$ is differentiable for all real x, hence it is continuous at all real x.

