January 8 Math 3260 sec. 51 Spring 2020

Section 1.1: Systems of Linear Equations

We defined the following:

- Linear equation and linear system,
- solution, and solution set, and
- Equivalent systems.

An Example

$$\begin{array}{rcl}
2x & - & y & = & -1 \\
-4x & + & 2y & = & 2
\end{array}$$

For this system, we saw that the ordered pair (1,3) is a solution. The solution set is $\{(x,y)|y=2x+1\}$. So this is an example of a system that has a solution, but has more than one. Turns out, we can make some observations and generalize.

The Geometry of 2 Equations with 2 Variables

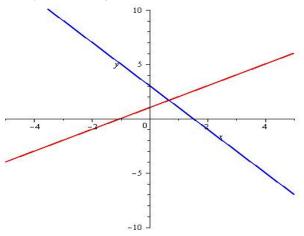


Figure: The system x - y = -1 and 2x + y = 3 with solution set $\{(2/3, 5/2)\}$. These equations represent lines that intersect at one point.

The Geometry of 2 Equations with 2 Variables

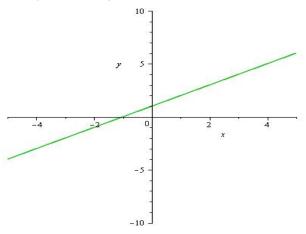


Figure: The system x - y = -1 and 2x - 2y = -2 with solution set $\{(x,y)|y=x+1\}$. Both equations represent the same line which share all common points as solutions.

4/55

The Geometry of 2 Equations with 2 Variables

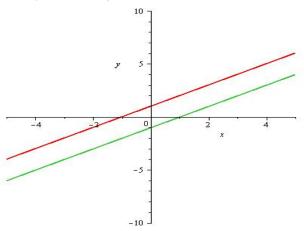


Figure: The system x - y = -1 and 2x - 2y = 2 with solution set \emptyset . These equations represent parallel lines having no common points.

Theorem

A linear system of equations has exactly one of the following:

- i No solution, or
- ii Exactly one solution, or
- iii Infinitely many solutions.

Terms: A system is

consistent if it has at least one solution (cases ii and iii), and **inconsistent** if is has no solutions (case i).

Recall those two critical questions about a linear system: (1) Does it have a solution? (existence), and (2) If it has a solution, is there only one? (uniqueness)

Legitimate Operations for Solving a System

We can perform three basic operation **without** changing the solution set of a system. These are

- swap the order of any two equations (swap),
- multiply an equation by any nonzero constant (scale), and
- replace an equation with the sum of itself and a nonzero multiple of any other equation (replace).

We'll try to solve a system by using these operations to *eliminate* variables from equations.

Some Operation Notation

Ei is the apartion

Notation

► Swap equations *i* and *j*:

$$E_i \leftrightarrow E_j$$

Scale equation i by k:

$$kE_i \to E_i$$

Replace equation j with the sum of itself and k times equation i:

$$kE_i + E_j \rightarrow E_j$$

Solve the following system of equations by elimination¹

$$-2E_{1}+E_{2}$$
 $-2\times_{1}-4\times_{2}+2\times_{3}=8$
 $2\times_{1}+\times_{3}=7$

First, we'll *eliminate* x_1 from the second and third equation.

$$-2E_1 + E_2 \longrightarrow E_2$$

$$X_1 + Z \times_Z - X_3 = -4$$

$$-4 \times_Z + 3 \times_3 = 15$$

$$X_1 + X_2 + X_3 = 6$$

¹The process here is technically called Gaussian Elimination → < ≥ > <

$$x_1 + 2x_2 - x_3 = -4$$

 $- 4x_2 + 3x_3 = 15$
 $x_1 + x_2 + x_3 = 6$

$$-E_{1}+E_{3}$$

 $-X_{1}-ZX_{2}+X_{3}=G$
 $X_{1}+X_{2}+X_{3}=G$

$$-E_1+E_3\longrightarrow E_3$$

$$x_1 + 2x_2 - x_3 = -4$$
 $-4 \times 2 + 3x_3 = 15$
 $-x_2 + 2x_3 = 10$

$$x_1 + 2x_2 - x_3 = -4$$

 $- 4x_2 + 3x_3 = 15$
 $- x_2 + 2x_3 = 10$

Now, we eliminate x_2 from the third equation (without reintroducing x_1). One option is $-\frac{1}{4}E_2 + E_3 \longrightarrow E_3$. But to avoid fractions, let's swap first.

$$E_2 \leftrightarrow E_3$$

$$x_1 + 2x_2 - x_3 = -4$$

 $-x_2 + 2x_3 = 10$
 $-4x_2 + 3x_2 = 15$

$$x_1 + 2x_2 - x_3 = -4$$

 $- x_2 + 2x_3 = 10$
 $- 4x_2 + 3x_3 = 15$

$$-4E_{2}+E_{3}$$

 $4\times_{2}-8\times_{3}=-40$
 $-4\times_{2}+3\times_{3}=15$

Now to eliminate x_2 : $-4E_2 + E_3 \longrightarrow E_3$

$$X_1 + 2X_2 - X_3 = -4$$
 $-X_2 + 2X_3 = 10$
 $-5X_3 = -25$

$$x_1 + 2x_2 - x_3 = -4$$

- $x_2 + 2x_3 = 10$
- $5x_3 = -25$

We can clean this up a little bit by performing

$$-E_2 \longrightarrow E_2$$
 and $-\frac{1}{5}E_3 \longrightarrow E_3$

$$x_{1} + 2x_{2} - x_{3} = -4$$
 $x_{3} = 5$

January 7, 2020 13/55

$$x_1 + 2x_2 - x_3 = -4$$

 $x_2 - 2x_3 = -10$
 $x_3 = 5$

Now the solution can be obtained with a little (back) substitution.

We know
$$X_3 = 5$$

From Ez
 $X_2 = -10 + 7 \times 3 = -10 + 2(5) = 0$

$$X_1 = -4 - 2X_2 + X_3 = -4 - 2(0) + 2 = 1$$

January 7, 2020 14/55