January 8 Math 3260 sec. 51 Spring 2020

Section 1.1: Systems of Linear Equations

We defined the following:

- Linear equation and linear system,
- solution, and solution set, and
- Equivalent systems.

An Example

$$
\begin{aligned}
2 x-y & =-1 \\
-4 x+2 y & =2
\end{aligned}
$$

For this system, we saw that the ordered pair $(1,3)$ is a solution. The solution set is $\{(x, y) \mid y=2 x+1\}$. So this is an example of a system that has a solution, but has more than one. Turns out, we can make some observations and generalize.

The Geometry of 2 Equations with 2 Variables

Figure: The system $x-y=-1$ and $2 x+y=3$ with solution set $\{(2 / 3,5 / 2)\}$. These equations represent lines that intersect at one point.

The Geometry of 2 Equations with 2 Variables

Figure: The system $x-y=-1$ and $2 x-2 y=-2$ with solution set $\{(x, y) \mid y=x+1\}$. Both equations represent the same line which share all common points as solutions.

The Geometry of 2 Equations with 2 Variables

Figure: The system $x-y=-1$ and $2 x-2 y=2$ with solution set \emptyset. These equations represent parallel lines having no common points.

Theorem

A linear system of equations has exactly one of the following:
i No solution, or
ii Exactly one solution, or
iii Infinitely many solutions.

Terms: A system is
consistent if it has at least one solution (cases ii and iii), and inconsistent if is has no solutions (case i).

Recall those two critical questions about a linear system: (1) Does it have a solution? (existence), and (2) If it has a solution, is there only one? (uniqueness)

Legitimate Operations for Solving a System

We can perform three basic operation without changing the solution set of a system. These are

- swap the order of any two equations (swap),
- multiply an equation by any nonzero constant (scale), and
- replace an equation with the sum of itself and a nonzero multiple of any other equation (replace).

We'll try to solve a system by using these operations to eliminate variables from equations.

Some Operation Notation

Notation

- Swap equations i and j :

$$
E_{i} \leftrightarrow E_{j}
$$

- Scale equation i by k :

$$
k E_{i} \rightarrow E_{i}
$$

- Replace equation j with the sum of itself and k times equation i :

$$
k E_{i}+E_{j} \rightarrow E_{j}
$$

Solve the following system of equations by

 elimination ${ }^{1}$.
$-2 E_{1}+E_{2}$

$\begin{aligned}-2 x_{1}-4 x_{2}+2 x_{3} & =8 \\ 2 x_{1} & +x_{3}\end{aligned}$

First, we'll eliminate x_{1} from the second and third equation.

$$
\begin{gathered}
-2 E_{1}+E_{2} \longrightarrow E_{2} \\
x_{1}+2 x_{2}-x_{3}=-4 \\
-4 x_{2}+3 x_{3}=15 \\
x_{1}+x_{2}+x_{3}=6
\end{gathered}
$$

${ }^{1}$ The process here is technically called Gaussian Elimination.

$$
\begin{array}{rlr}
x_{1}+2 x_{2}-x_{3}=-4 & -x_{1}-2 x_{2}+x_{3}=4 \\
-4 x_{2}+3 x_{3}=15 & x_{1}+x_{2}+x_{3}=6 \\
x_{1}+x_{2}+x_{3}=6 &
\end{array}
$$

$$
-E_{1}+E_{3} \longrightarrow E_{3}
$$

$$
\begin{array}{r}
x_{1}+2 x_{2}-x_{3}=-4 \\
-4 x_{2}+3 x_{3}=15 \\
-x_{2}+2 x_{3}=10
\end{array}
$$

$$
\begin{aligned}
x_{1}+2 x_{2}-x_{3} & =-4 \\
& -4 x_{2}+3 x_{3}
\end{aligned}=150102 x_{3}=10
$$

Now, we eliminate x_{2} from the third equation (without reintroducing x_{1}). One option is $-\frac{1}{4} E_{2}+E_{3} \longrightarrow E_{3}$. But to avoid fractions, let's swap first.

$$
\begin{gathered}
E_{2} \leftrightarrow E_{3} \\
x_{1}+2 x_{2}-x_{3}=-4 \\
-x_{2}+2 x_{3}=10 \\
-4 x_{2}+3 x_{3}=15
\end{gathered}
$$

$$
\begin{array}{rlr}
x_{1}+2 x_{2}-x_{3}=-4 & -4 e_{2}+E_{3} \\
-x_{2}+2 x_{3}=10 & 4 x_{2}-8 x_{3}=-40 \\
-4 x_{2}+3 x_{3}=15 & -4 x_{2}+3 x_{3}=15
\end{array}
$$

Now to eliminate $x_{2}: \quad-4 E_{2}+E_{3} \longrightarrow E_{3}$

$$
\begin{aligned}
x_{1}+2 x_{2} & -x_{3}=-4 \\
-x_{2} & +2 x_{3}=10 \\
& -5 x_{3}=-25
\end{aligned}
$$

$$
\begin{aligned}
x_{1}+2 x_{2}-x_{3} & =-4 \\
-x_{2} & +2 x_{3}
\end{aligned}=10, ~=5 x_{3}=-25
$$

We can clean this up a little bit by performing

$$
\begin{aligned}
&-E_{2} \longrightarrow E_{2} \text { and }-\frac{1}{5} E_{3} \longrightarrow E_{3} \\
& x_{1}+2 x_{2}-x_{3}=-4 \\
& x_{2}-2 x_{3}=-10 \\
& x_{3}=5
\end{aligned}
$$

$$
\begin{aligned}
x_{1}+2 x_{2}-x_{3} & =-4 \\
x_{2}-2 x_{3} & =-10 \\
x_{3} & =5
\end{aligned}
$$

Now the solution can be obtained with a little (back) substitution.

$$
\begin{aligned}
\text { From } E_{3}, x_{3}=5 \\
\text { From } \begin{aligned}
E_{2} & x_{2}
\end{aligned} \begin{aligned}
& =-10+2 x_{3}=-10+2(5) \\
& =0
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { From } E_{1} \quad x_{1}=-4-2 x_{2}+x_{3} \\
& =-4-2(0)+5 \\
& =1
\end{aligned}
$$

Ore way to state the conclusion is

$$
\begin{aligned}
& x_{1}=1 \\
& x_{2}=0 \\
& x_{3}=5
\end{aligned}
$$

we could express the solution as

$$
(1,0,5)
$$

