## Math 2254H sec 015H Spring 2015

## Section 6.3* The Natural Exponential Function

Remark: The natural logarithm is a one-to-one function.

Definition: The exponential function is the inverse of the natural logarithm. It is denoted by

$$
\exp (x) \text { or } e^{x}
$$

and defined by

$$
\exp (x)=y \quad \text { if and only if } \quad x=\ln y
$$

## Relationship between $\ln x$ and $\exp x$

- In $x$ has domain $(0, \infty)$ and range $(-\infty, \infty)$
- exp $x$ has domain $(-\infty, \infty)$ and range $(0, \infty)$
- $\exp (\ln x)=x$ for all $x>0$ and $\ln (\exp x)=x$ for all $x$
- Since $\ln x \rightarrow-\infty$ as $x \rightarrow 0^{+}$we have

$$
\lim _{x \rightarrow-\infty} \exp (x)=0
$$

- and since $\ln x \rightarrow \infty$ as $x \rightarrow \infty$ we have

$$
\lim _{x \rightarrow \infty} \exp (x)=\infty
$$



Figure: The graph of $y=e^{x}$ (with graph of $y=\ln x$ for comparison).

## Laws of Exponents

Let $x$ and $y$ be real and $r$ rational. Then

$$
\begin{gathered}
\text { (1) } e^{x+y}=e^{x} e^{y}, \quad \text { (2) } \quad e^{x-y}=\frac{e^{x}}{e^{y}}, \quad \text { and } \\
\text { (3) } \quad\left(e^{x}\right)^{r}=e^{r x} .
\end{gathered}
$$

## Differentiation Rule ${ }^{1}$

$$
\frac{d}{d x} e^{x}=e^{x}, \quad \text { so that } \quad \frac{d}{d x} e^{u}=e^{u} \frac{d u}{d x}
$$

${ }^{1}$ The function $f(x)=e^{x}$ is differentiable for all real $x$, hence it is continuous at all real $x$.

For all real $x, \ln \left(e^{x}\right)=x$. Show that it follows that

$$
\begin{aligned}
& \frac{d}{d x} e^{x}=e^{x} \\
& \frac{d}{d x}\left[\ln \left(e^{x}\right)\right]=\frac{d}{d x}[x] \\
& \frac{1}{e^{x}} \frac{d}{d x} e^{x}=1 \Rightarrow \\
& \frac{d}{d x} e^{x}=e^{x}
\end{aligned}
$$

Evaluate each derivative
(a) $\frac{d}{d x} e^{x^{2}}=e^{x^{2}}(2 x)=2 x e^{x^{2}}$
(b) $\frac{d}{d t} e^{-3 t}=e^{-3 t}(-3)=-3 e^{-3 t}$
(c)

$$
\begin{aligned}
\frac{d}{d x} \exp (\cos (\pi x)) & =e^{\cos (\pi x)}(-\sin (\pi x) \pi) \\
& =-\pi \sin (\pi x) e^{\cos (\pi x)}
\end{aligned}
$$

## Since $\frac{d}{d x} e^{x}=e^{x}$, we have

$$
\int e^{u} d u=e^{u}+C
$$

Example: evaluate $\int x e^{x^{2}} d x$

$$
\text { Let } \begin{aligned}
u & =x^{2} \\
d u & =2 x d x
\end{aligned}
$$

$$
=\frac{1}{2} \int e^{u} d u
$$

$$
\frac{1}{2} d u=x d x
$$

$$
=\frac{1}{2} e^{u}+C=\frac{1}{2} e^{x^{2}}+C
$$

Let $u=-2 t$

$$
\begin{aligned}
& \text { Evaluate: } \int_{0}^{1} e^{-2 t} d t \\
& d u=-2 d t \\
& -\frac{1}{2} d u=d t \\
& =\frac{-1}{2} \int_{0}^{-2} e^{u} d u \\
& \text { when } t=0 \text {, } u=0 \\
& t=1, u=-2 \\
& =\left.\frac{-1}{2} e^{u}\right|_{0} ^{-2}=\frac{-1}{2} e^{-2}-\left(\frac{-1}{2}\right) \theta^{0} \\
& =\frac{1}{2}-\frac{1}{2 e^{2}}
\end{aligned}
$$

A General Result
Evaluate: $\int e^{a x} d x$ for a any nonzero constant.
uh $u=a x$ so that $\frac{1}{a} d u=d x$

It follow that

$$
\int e^{a x} d x=\frac{1}{a} e^{a x}+C
$$

Another General Result
Evaluate: $\int \frac{d x}{a x+b}$ for $a \neq 0$ and $b$ any constants.
Let $u=a x+b$ so $\frac{1}{a} d u=d x$

Then

$$
\int \frac{d x}{a x+b}=\frac{1}{a} \ln |a x+b|+C
$$

## Section 6.4*: General Logarithm and Exponential Functions

If $a>0$ and $a \neq 1$, we define the exponential function with base $a$ by

$$
a^{x}=e^{x \ln a}
$$

Some Properties: Let $x$ and $y$ be real numbers, and $a$ and $b$ positive real numbers. Then
(1) $a^{x+y}=a^{x} a^{y}$,
(2) $a^{x-y}=\frac{a^{x}}{a^{y}}$,
(3) $\left(a^{x}\right)^{y}=a^{x y}$,
(4) $(a b)^{x}=a^{x} b^{x}$


Figure: Plots of $a^{x}$ for varying values of $a$. Note $a^{0}=1$ for any $a$.

## Important Limits:

$$
\lim _{x \rightarrow \infty} a^{x}=\left\{\begin{array}{cc}
\infty, & a>1 \\
0, & 0<a<1
\end{array}, \quad \lim _{x \rightarrow-\infty} a^{x}=\left\{\begin{array}{lc}
0, & a>1 \\
\infty, & 0<a<1
\end{array}\right.\right.
$$

For example, evaluate
$\lim _{x \rightarrow \infty} \pi^{x}=\infty$

$$
\pi>1
$$

$\lim _{t \rightarrow \infty}\left(\frac{3}{7}\right)^{x}=0$
$0<\frac{3}{7}<1$

## Important Limits:

$$
\lim _{x \rightarrow \infty} a^{x}=\left\{\begin{array}{cc}
\infty, & a>1 \\
0, & 0<a<1
\end{array}, \quad \lim _{x \rightarrow-\infty} a^{x}=\left\{\begin{array}{cc}
0, & a>1 \\
\infty, & 0<a<1
\end{array}\right.\right.
$$

For example, evaluate
$\lim _{y \rightarrow 1^{-}} 2^{\frac{1}{y-1}}=0$

$$
\lim _{y \rightarrow 1^{-}} \frac{1}{y-1}=-\infty \quad \text { and } \quad z>1
$$

$\lim _{x \rightarrow \infty} \frac{3^{-x}}{4^{-x}}=\infty$

$$
\frac{3^{-x}}{4^{-x}}=\left(\frac{4}{3}\right)^{x} \text { and } \frac{4}{3}>1
$$

## Differentiation and Integration

Let $a>0$ and $a \neq 1$.

$$
\begin{array}{ll}
\frac{d}{d x} a^{x}=a^{x} \ln a & a^{x}=e^{x \ln a} \\
& \begin{array}{l}
\text { is } \text { ind constant } x \ln a \\
\text { tines } x
\end{array} \\
\int a^{x} d x=\frac{a^{x}}{\ln a}+C &
\end{array}
$$

Evaluate
(a)

$$
\begin{aligned}
\frac{d}{d t} 7^{2 t+1} & =7^{2 t+1}(\ln 7) 2 \\
& =2(\ln 7) 7^{2 t+1}
\end{aligned}
$$

(b) $\int 3^{x} d x$

$$
=\frac{3^{x}}{\ln 3}+c
$$

Let $u=x^{2}, \quad d u=2 x \partial x$

$$
\begin{aligned}
& \text { (c) } \int_{0}^{2} x\left(\frac{1}{2}\right)^{x^{2}} d x \\
& \text { if } \\
& x=0, n=0 \\
& x=2, u=4 \\
& =\frac{1}{2} \int_{0}^{4}\left(\frac{1}{2}\right) d u \\
& =\left.\frac{1}{2} \frac{\left(\frac{1}{2}\right)^{n}}{\ln \left(\frac{1}{2}\right)}\right|_{0} ^{4}=\frac{1}{2} \frac{\left(\frac{1}{2}\right)^{4}}{(-\ln 2)}-\frac{1}{2} \frac{\left(\frac{1}{2}\right)^{0}}{(-\ln 2)} \\
& =\frac{1}{2 \ln 2}-\frac{1}{32 \ln 2}
\end{aligned}
$$

## Exponential versus Power Functions

Don't confuse exponential functions (exponent is a variable) with power functions (base is a variable)!

Power: $f(x)=x^{k}$
Exponential: $f(x)=a^{x}$

$$
\begin{gathered}
\frac{d}{d x} x^{2}=2 x, \text { compare to } \frac{d}{d x} 2^{x}=2^{x} \ln 2 \\
\int x^{3} d x=\frac{x^{4}}{4}+C, \quad \text { compare to } \int 3^{x} d x=\frac{3^{x}}{\ln 3}+C
\end{gathered}
$$

Logarithmic Differentiation for hybrid functions Use the natural logarithm to evaluate the derivative

$$
\begin{aligned}
& \frac{d}{d x} x^{x} \ln y=\ln \left(x^{x}\right)=x \ln x \quad \text { nance } \\
& \frac{1}{y} \frac{d y}{d x}=\ln x+x \cdot \frac{1}{x} \\
& \frac{d y}{d x}=y(\ln x+1) \\
& \frac{d y}{d x}=x^{x}(\ln x+1)
\end{aligned}
$$

## General Logarithm

If $a>0$ and $a \neq 1$, then $f(x)=a^{x}$ is one-to-one and has inverse function called the logarithmic function with base a. This inverse is denoted and defined by

$$
\log _{a} x=y \quad \text { if and only if } \quad a^{y}=x
$$

Remark: $\log _{e} x=\ln x$

## Change of Base Formula

We can translate between various bases via the formula

$$
\log _{a} x=\frac{\log _{b} x}{\log _{b} a}
$$

for any $a, b$, and $x$ positive with $a \neq 1$ and $b \neq 1$.

In particular

$$
\log _{a} x=\frac{\ln x}{\ln a}
$$

## Derivative Formula

For $a>0$ and $a \neq 1$, find a formula for

$$
\begin{aligned}
\frac{d}{d x} \log _{a} x & =\frac{d}{d x}\left(\frac{\ln x}{\ln a}\right) \\
& =\frac{1}{x \ln a}
\end{aligned}
$$

Evaluate $\frac{d}{d x} \log _{2} x=\frac{1}{x \ln 2}$

Evaluate

$$
\frac{d}{d x} \log _{6}\left(x^{3}+3 x^{2}\right)=\frac{3 x^{2}+6 x}{\left(x^{3}+3 x^{2}\right) \ln 6}
$$

## e as a limit

Since $f(x)=\ln x$ satisfies $f^{\prime}(1)=1 / 1=1$, we have

$$
\begin{aligned}
f^{\prime}(1) & =\lim _{h \rightarrow 0} \frac{\ln (1+h)-\ln (1)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h} \ln (1+h) \\
& =\lim _{h \rightarrow 0} \ln (1+h)^{1 / h}=1
\end{aligned}
$$

Since $e^{x}$ is continuous, we can exponentiate. Writing $x$ instead of $h$

$$
e=e^{1}=e^{\lim _{x \rightarrow 0} \ln (1+x)^{1 / x}}=\lim _{x \rightarrow 0} e^{\ln (1+x)^{1 / x}}=\lim _{x \rightarrow 0}(1+x)^{1 / x}
$$

## Well known limits

$$
e=\lim _{x \rightarrow 0}(1+x)^{1 / x}
$$

$$
e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

