January 9 Math 2306 sec. 53 Spring 2019

Section 1: Concepts and Terminology

We have defined differential equations, and started to define certain characteristics and categories:

- Ordinary differential equations (ODEs) have one independent variable; partial differential equations (PDEs) have two or more independent variables.
- The order of an equation is equal to largest order of derivative appearing in the equation.
- An $n^{\text {th }}$ order equation in normal form looks like $\frac{d^{n} y}{d x^{n}}=f\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right)$ for some function f.

Notations and Symbols

If $n=1$ or $n=2$, an equation in normal form would look like

$$
\frac{d y}{d x}=f(x, y) \quad \text { or } \quad \frac{d^{2} y}{d x^{2}}=f\left(x, y, y^{\prime}\right)
$$

Differential Form: A first order equation may appear in the form

$$
M(x, y) d x+N(x, y) d y=0
$$

$M(x, y) d x+N(x, y) d y=0$

Differential forms may be written in normal form in a couple of ways.

Assuming we do not divide by zero, we could write

$$
\frac{d y}{d x}=-\frac{M(x, y)}{N(x, y)} \quad \text { or } \quad \frac{d x}{d y}=-\frac{N(x, y)}{M(x, y)}
$$

Classifications

Linearity: An $n^{\text {th }}$ order differential equation is said to be linear if it can be written in the form

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

Linear ODE

Linearity: An $n^{\text {th }}$ order differential equation is said to be linear if it can be written in the form

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) .
$$

The key characteristics here are:

- y and any of its derivatives can only appear as themselves (to the first power),
- coefficients of y and its derivatives may depend on the independent variable, but not on y or its derivatives,

Linear ODE

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

If we define the operation L by

$$
L y=a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y
$$

then L is a linear operator in the sense that

$$
\begin{gathered}
L(C y)=C L y \quad \text { for any constant } C, \quad \text { and } \\
L\left(y_{1}+y_{2}\right)=L y_{1}+L y_{2},
\end{gathered}
$$

for any pair of sufficiently differentiable functions y_{1} and y_{2}.

Examples (Linear -vs- Nonlinear)

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

The following are linear.

$$
y^{\prime \prime}+4 y=0 \quad t^{2} \frac{d^{2} x}{d t^{2}}+2 t \frac{d x}{d t}-x=e^{t}
$$

Looks like

$$
a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=g(x)
$$

where

$$
\begin{aligned}
& a_{2}(x)=1 \\
& a_{1}(x)=0 \\
& a_{0}(x)=4 \\
& g(x)=0
\end{aligned}
$$

$$
\begin{aligned}
& a_{2}(t) x^{\prime \prime}+a_{1}(t) x^{\prime}+a_{0}(t) x=g(t) \\
& a_{2}(t)=t^{2} \\
& a_{1}(t)=2 t \quad g(t)=e^{t} \\
& a_{0}(t)=-1
\end{aligned}
$$

Examples (Linear -vs- Nonlinear)

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

The following are nonlinear.

$$
\frac{d^{3} y}{d x^{3}}+\left(\frac{d y}{d x}\right)^{4}=x^{3}
$$

$$
u^{\prime \prime}+u^{\prime}=\cos u
$$

This is nonlinear term

$$
y^{\prime \prime \prime}+\left(y^{\prime}\right)^{3} y^{\prime}=x^{3}
$$

nonlinear
term
Not: we know that

$$
\operatorname{Cos}(c u) \neq c \cos (n)
$$

Example: Classification
Identify the independent and dependent variables. Determine the order of the equation. State whether it is linear or nonlinear.
(a) $y^{\prime \prime}+2 t y^{\prime}=\cos t+y-y^{\prime \prime \prime} \Rightarrow y^{\prime \prime \prime}+y^{\prime \prime}+2 t y^{\prime}-y=\operatorname{Cos} t$

Independent variable t
dependent y
Order $3^{\text {rd }}$
It is liner
(b) $\ddot{\theta}+\frac{g}{\ell} \sin \theta=0 \quad g$ and ℓ are constant

Order $2^{\text {nd }}$
Independent variable is time (probably t) dependent is θ

As θ is dependent $\sin \theta$ is a nonlinear term The equation is nonlinear.

Solution of $F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0\left(^{*}\right)$

Definition: A function ϕ defined on an interval ${ }^{1}$ I and possessing at least n continuous derivatives on / is a solution of (*) on / if upon substitution (i.e. setting $y=\phi(x)$) the equation reduces to an identity.

Definition: An implicit solution of (${ }^{*}$) is a relation $G(x, y)=0$ provided there exists at least one function $y=\phi$ that satisfies both the differential equation (*) and this relation.

[^0]Examples:
Verify that the given function is an solution of the ODE on the indicated interval.

$$
\phi(t)=3 e^{2 t}, \quad I=(-\infty, \infty), \quad \frac{d^{2} y}{d t^{2}}-\frac{d y}{d t}-2 y=0
$$

ϕ has 2 continuous derivatives on I (it has ∞-many).
we complete the verification by showing that if $y=3 e^{2 t}$, the ODE is true.

$$
\begin{aligned}
& y=3 e^{2 t} \\
& y^{\prime}=6 e^{2 t} \\
& y^{\prime \prime}=12 e^{2 t}
\end{aligned}
$$

$$
\begin{aligned}
y^{\prime \prime}-y^{\prime}-2 y & = \\
12 e^{2 t}-6 e^{2 t}-2\left(3 e^{2 t}\right) & = \\
12 e^{2 t}-6 e^{2 t}-6 e^{2 t} & = \\
0 \cdot e^{2 t} & =0 \\
0 & =0
\end{aligned}
$$

So $\phi=3 e^{2 t}$ is a solution on $(-\infty, \infty)$.

[^0]: ${ }^{1}$ The interval is called the domain of the solution or the interval of definition.

