January 9 Math 2306 sec. 54 Spring 2019

Section 1: Concepts and Terminology

We have defined differential equations, and started to define certain
characteristics and categories:

» Ordinary differential equations (ODEs) have one independent
variable; partial differential equations (PDEs) have two or more
independent variables.

» The order of an equation is equal to largest order of derivative
appearing in the equation.

» An n'" order equation in normal form looks like
n
chix}; =f(x,y,y’,...,y"=") for some function f.
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Notations and Symbols

If n=1or n= 2, an equation in normal form would look like

dy d?y ,
dx f(x,y) or axz f(x,y,y').

Differential Form: A first order equation may appear in the form
M(x,y)dx + N(x,y)dy =0

‘D\&‘\'w'\kd&
S(\u‘M

January 7, 2019

2/48



M(x,y)dx + N(x,y)dy =0

Differential forms may be written in normal form in a couple of ways.
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Classifications

Linearity: An n'" order differential equation is said to be linear if it can
be written in the form

dn—1y dy
gt Tt (X)ﬁ +ag(x)y = 9(x).

dy
ax”n

an(x) + ap—1(x)
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Linear ODE

Linearity: An n'" order differential equation is said to be linear if it can
be written in the form

d"y dn-! d
an(x )dx”+ n—1(x )dxinj+~--+a1(x)d—§+a0(x)y:g(x).

The key characteristics here are:

» y and any of its derivatives can only appear as themselves (to the
first power),

» coefficients of y and its derivatives may depend on the
independent variable, but not on y or its derivatives,
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Linear ODE

arly
dxn—1

d’y

X" + an—1(x)

an(X) dx

If we define the operation L by

d" an-1 d
Ly = an(X) G + 8n-1(X) Gy + o @) 5L+ ao(x)y

then L is a linear operator in the sense that

L(Cy) = CLy for any constant C, and

L(y1 + yo) = Lys + Lyo,
for any pair of sufficiently differentiable functions y; and y».
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Examples (Linear -vs- Nonlinear)

dny n—1y

a0 a0 G e a0 + by = g0,
The following are linear.
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Examples (Linear -vs- Nonlinear)

n n—1
a2 4 a0 a0

XN axn—1 dx + ao(x)y = g(X)
The following are nonlinear.
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Example: Classification

Identify the independent and dependent variables. Determine the
order of the equation. State whether it is linear or nonlinear.
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(b) é+% sind =0 g and ¢ are constant
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Solution of F(x,y,y',...,y™M) =0 (*

Definition: A function ¢ defined on an interval’ / and possessing at
least n continuous derivatives on [ is a solution of (*) on /if upon
substitution (i.e. setting y = ¢(x)) the equation reduces to an identity.

Definition: An implicit solution of (*) is a relation G(x,y) =0
provided there exists at least one function y = ¢ that satisfies both the
differential equation (*) and this relation.

"The interval is called the domain of the solution or the interval of definition.
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Examples:

Verify that the given function is an solution of the ODE on the indicated

interval.
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