January 9 Math 2306 sec. 54 Spring 2019

Section 1: Concepts and Terminology

We have defined *differential equations*, and started to define certain characteristics and categories:

- Ordinary differential equations (ODEs) have one independent variable; partial differential equations (PDEs) have two or more independent variables.
- ► The order of an equation is equal to largest order of derivative appearing in the equation.
- An n^{th} order equation in *normal form* looks like $\frac{d^n y}{dx^n} = f(x, y, y', \dots, y^{(n-1)}) \text{ for some function } f.$

January 7, 2019 1 / 48

Notations and Symbols

If n = 1 or n = 2, an equation in normal form would look like

$$\frac{dy}{dx} = f(x, y)$$
 or $\frac{d^2y}{dx^2} = f(x, y, y')$.

Differential Form: A first order equation may appear in the form

$$M(x,y) dx + N(x,y) dy = 0$$

$$P(fleen + x) dx$$

$$M(x, y) dx + N(x, y) dy = 0$$

Differential forms may be written in normal form in a couple of ways.

$$\frac{dy}{dx} = \frac{-M(x,y)}{N(x,y)}$$

$$\frac{dx}{dy} = \frac{-N(x,y)}{m(x,b)}$$

Classifications

Linearity: An n^{th} order differential equation is said to be **linear** if it can be written in the form

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x).$$

Linear ODE

Linearity: An n^{th} order differential equation is said to be **linear** if it can be written in the form

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x).$$

The key characteristics here are:

- ▶ y and any of its derivatives can only appear as themselves (to the first power),
- coefficients of y and its derivatives may depend on the independent variable, but not on y or its derivatives,

Linear ODE

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x).$$

If we define the operation L by

$$Ly = a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_1(x)\frac{dy}{dx} + a_0(x)y$$

then *L* is a **linear operator** in the sense that

$$L(Cy) = CLy$$
 for any constant C , and

$$L(y_1 + y_2) = Ly_1 + Ly_2,$$

for any pair of sufficiently differentiable functions y_1 and y_2 .

Examples (Linear -vs- Nonlinear)

$$a_n(x)\frac{d^ny}{dx^n}+a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}}+\cdots+a_1(x)\frac{dy}{dx}+a_0(x)y=g(x).$$

The following are linear.

$$y'' + 4y = 0$$
Of the form
$$a_{2}(x)y'' + a_{1}(x)y' + a_{0}(x)y = g(x)$$
where
$$a_{2}(x) = 1$$

$$a_{1}(x) = 0$$

$$a_{0}(x) = 4$$

$$a(x) = 0$$

$$t^{2} \frac{d^{2}x}{dt^{2}} + 2t \frac{dx}{dt} - x = e^{t}$$

$$a_{2}(t) x'' + a_{1}(t) x' + a_{0}(t) x = g(t)$$

$$a_{2}(t) = t^{2}$$

$$a_{1}(t) = 2t$$

$$a_{0}(t) = -1$$

$$g(t) = e^{t}$$

Examples (Linear -vs- Nonlinear)

$$a_n(x)\frac{d^ny}{dx_1^n}+a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}}+\cdots+a_1(x)\frac{dy}{dx}+a_0(x)y=g(x).$$

The following are nonlinear.

$$u'' + u' = \cos u$$

$$fer$$

vis dependent, so Cosh is nonlinear term

Example: Classification

Identify the independent and dependent variables. Determine the order of the equation. State whether it is linear or nonlinear.

(a)
$$y'' + 2ty' = \cos t + y - y''' \Rightarrow y''' + y'' + 2ty' - y = Cost$$

Independent variable t

dependent y

Order 3rd

January 7, 2019 9 / 48

(b) $\ddot{\theta} + \frac{g}{\ell} \sin \theta = 0$ g and ℓ are constant

Or der is time t Independent variable dependent is A Q is dependent, Sin O is a nonlinear term The ODE is nonlinear

January 7, 2019 10 / 48

Solution of $F(x, y, y', ..., y^{(n)}) = 0$ (*)

Definition: A function ϕ defined on an interval¹ I and possessing at least n continuous derivatives on I is a **solution** of (*) on I if upon substitution (i.e. setting $y = \phi(x)$) the equation reduces to an identity.

Definition: An **implicit solution** of (*) is a relation G(x, y) = 0 provided there exists at least one function $y = \phi$ that satisfies both the differential equation (*) and this relation.

¹The interval is called the *domain of the solution* or the *interval of definition*.

Examples:

Verify that the given function is an solution of the ODE on the indicated interval.

$$\phi(t) = 3e^{2t}, \quad I = (-\infty, \infty), \quad \frac{d^2y}{dt^2} - \frac{dy}{dt} - 2y = 0$$

$$\phi \text{ has } 2 \text{ continuous deivotion on } I \quad \text{(if has } y - \text{ many)}.$$

$$\text{Lis substitute } y = \phi(t) \text{ into the Equation}$$

$$\text{For } y = 3e^{2t}$$

$$y' = 6e^{2t}$$

$$y'' = 12e^{2t}$$

$$y'' - y' - 2y = 12e^{2t} - 6e^{2t} - 2(3e^{2t}) = 12e^{2t} - 6e^{2t} - 6e^{2t} = 0$$
 $0 = 0$

So $\phi(6) = 3e^{2t}$ is a solution.

◆□▶◆□▶◆豆▶◆豆> 豆 めの○