January 9 Math 2306 sec. 60 Spring 2019

Section 1: Concepts and Terminology

We have defined *differential equations*, and started to define certain characteristics and categories:

- Ordinary differential equations (ODEs) have one independent variable; partial differential equations (PDEs) have two or more independent variables.
- The order of an equation is equal to largest order of derivative appearing in the equation.
- An *n*th order equation in *normal form* looks like $\frac{d^n y}{dx^n} = f(x, y, y', \dots, y^{(n-1)}) \text{ for some function } f.$

Notations and Symbols

If n = 1 or n = 2, an equation in normal form would look like

$$\frac{dy}{dx} = f(x, y)$$
 or $\frac{d^2y}{dx^2} = f(x, y, y').$

Differential Form: A first order equation may appear in the form

$$M(x, y) \, dx + N(x, y) \, dy = 0$$

イロト イポト イヨト イヨト

э

2/48

January 7, 2019

 $M(x, y) \, dx + N(x, y) \, dy = 0$

Differential forms may be written in normal form in a couple of ways.

Assuming we do not divide by zero, we could write

$$\frac{dy}{dx} = -\frac{M(x,y)}{N(x,y)}$$
 or $\frac{dx}{dy} = -\frac{N(x,y)}{M(x,y)}$

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = つへで January 7, 2019 3 / 48

Classifications

Linearity: An *n*th order differential equation is said to be **linear** if it can be written in the form

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x).$$

Linear ODE

Linearity: An *n*th order differential equation is said to be **linear** if it can be written in the form

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x).$$

The key characteristics here are:

- y and any of its derivatives can only appear as themselves (to the first power),
- coefficients of y and its derivatives may depend on the independent variable, but not on y or its derivatives,

Linear ODE

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x).$$

If we define the operation *L* by

$$Ly = a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y$$

then L is a linear operator in the sense that

L(Cy) = CLy for any constant *C*, and

$$L(y_1 + y_2) = Ly_1 + Ly_2,$$

for any pair of sufficiently differentiable functions y_1 and y_2 .

Examples (Linear -vs- Nonlinear)

$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x).$$

The following are linear.

y'' + 4y = 0Looks like az (2014)" + a, (2714) + a, (2714) = g (2) a $Q_{1}(x) = 1$ $a_1(x) = 0$ $a_{0}(x) = 4$ g(x) = 0

$$e^{2} \frac{d^{2}x}{dt^{2}} + 2t \frac{dx}{dt} - x = e^{t}$$

$$e^{t} = e^{t}$$

$$a_{2}(t)x'' + a_{1}(t)x' + a_{0}(t)x = g(t)$$

$$a_{2}(t) = t^{2}$$

$$a_{1}(t) = 2t$$

$$a_{0}(t) = -1$$

$$g(t) = e^{t}$$

- 3

7/48

January 7, 2019

Examples (Linear -vs- Nonlinear)

$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1} y}{dx^{n-1}} + \cdots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x).$$

The following are nonlinear.

$$\frac{d^{3}y}{dx^{3}} + \left(\frac{dy}{dx}\right)^{4} = x^{3}$$

$$u'' + u' = \cos u$$

Note Cos(Cn) = C Cosn

January 7, 2019

8/48

Example: Classification

Identify the independent and dependent variables. Determine the order of the equation. State whether it is linear or nonlinear.

(a)
$$y''+2ty' = \cos t+y-y'''$$

rearrange $y''' + y'' + 2ty' - y = Cost$
Dependent van is y
Independent t
Orden 3rd $a_3(t) = 1$ $a_0(t) = -1$
This is linear $a_2(t) = 1$ $g(t) = Cost$
 $a_1(t) = 2t$

January 7, 2019 9 / 48

(b) $\ddot{\theta} + \frac{g}{\ell} \sin \theta = 0$ g and ℓ are constant Order is 2nd t for time Independent variable dependent variable 0 The eqn is nonlinear, Sind is a nonlineer term as 0 is dependent

January 7, 2019 10 / 48

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Solution of $F(x, y, y', ..., y^{(n)}) = 0$ (*)

Definition: A function ϕ defined on an interval¹ / and possessing at least *n* continuous derivatives on *I* is a **solution** of (*) on *I* if upon substitution (i.e. setting $y = \phi(x)$) the equation reduces to an identity.

Definition: An **implicit solution** of (*) is a relation G(x, y) = 0 provided there exists at least one function $y = \phi$ that satisfies both the differential equation (*) and this relation.

¹The interval is called the *domain of the solution* or the *interval of definition*. January 7, 2019 11/48

Examples:

Verify that the given function is an solution of the ODE on the indicated interval.

$$\phi(t) = 3e^{2t}, \quad I = (-\infty, \infty), \quad \frac{d^2y}{dt^2} - \frac{dy}{dt} - 2y = 0$$

$$\phi \text{ has at least 2 continuous desirations on I.}$$

Let's show that if we substitute $y = \phi(t)$, the
ODE is true.
For $y = 3e^{2t}$
 $y' = 6e^{2t}$ and
 $y'' = 12e^{2t}$

$$y'' - y' - 2y =$$

 $12e^{2t} - 6e^{2t} - a(3e^{2t}) =$
 $12e^{2t} - 6e^{2t} - 6e^{2t} =$
 $0e^{2t} = 0$
So $y^{2} 3e^{2t}$ is a solution to the ODE.

January 7, 2019 13 / 48

・ロト・西ト・モン・モー シック