January 9 Math 3260 sec. 55 Spring 2018

In a certain city, $A B C$ shipping has one receiving (A) and two distribution hubs (B \& C). On a given day, 80 packages enter center A and will be distributed to hubs B and C for delivery. Twenty packages will go to a major client from hub C , the rest are to be distributed in quantities x_{1}, \ldots, x_{4} among the hubs and out for delivery.

Motivating Example

Figure: Distribution Scheme

Equations for Package Quantities

Assuming all of the packages are delivered to customers outside of the shipping company, the quantities x_{1}, \ldots, x_{4} have to satisfy the equations

$$
\begin{aligned}
x_{1}+x_{3} & =20 \\
x_{2}-x_{3}-x_{4} & =0 \\
x_{1}+x_{2} & =80
\end{aligned}
$$

Questions

- Is there a set of numbers x_{1}, \ldots, x_{4} that satisfy all of the equations?
- If there is a set of numbers, is it the only one?
- If we could find numbers x_{1}, \ldots, x_{4}, and then the input 80 changed (say on another day), do we have to do all the work again? Or is there a way to generalize our finding?

Section 1.1: Systems of Linear Equations

We begin with a linear (algebraic) equation in n variables $x_{1}, x_{2}, \ldots, x_{n}$ for some positive integer n.

A linear equation can be written in the form

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b
$$

The numbers a_{1}, \ldots, a_{n} are called the coefficients. These numbers and the right side b are real (or complex) constants that are known.

Examples of Equations that are or are not Linear
pith $2 x_{1}=4 x_{2}-3 x_{3}+5$ and $12-\sqrt{3}(x+y)=0$
Q, 1005

$$
2 x_{1}-4 x_{2}+3 x_{3}=5 \quad \sqrt{3} x+\sqrt{3} y=12
$$

$$
\begin{aligned}
& \text { not monnear } x_{1}+3 x_{3}=\frac{1}{x_{2}} \text { and } x y z=\sqrt{w} \\
& \text { no } \uparrow \\
& \text { ronlined } \\
& \text { non liber } \\
& \text { term } \\
& \text { variables }
\end{aligned}
$$

A Linear System is a collection of linear equations in

 the same variables$$
\begin{gathered}
2 x_{1}+x_{2}-3 x_{3}+x_{4}=-3 \\
-x_{1}+3 x_{2}+4 x_{3}-2 x_{4}=8 \\
x+2 y+3 z=4 \\
3 x+12 z=0 \\
2 x+2 y-5 z=-6
\end{gathered}
$$

Some terms

- A solution is a list of numbers $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ that reduce each equation in the system to a true statement upon substitution.
- A solutions set is the set of all possible solutions of a linear system.
- Two systems are called equivalent if they have the same solution set.

An Example

$$
\begin{aligned}
2 x-y & =-1 \\
-4 x+2 y & =2
\end{aligned}
$$

(a) Show that $(1,3)$ is a solution.
$(1,3)$ mans $x=1, y=3$.
lIst eq

$$
2(1)-(3)=2-3=-1
$$

The eqnis $-1=-1$ on identity
$2^{\text {nd }}$ can

$$
-4(1)+2(3)=-4+6=2
$$

The eon is $2=2$ an identity.
So $(1,3)$ is a solution.

An Example Continued

$$
\begin{gathered}
2 x-y=-1 \\
-4 x+2 y=2
\end{gathered}
$$

(b) Note that $\{(x, y) \mid y=2 x+1\}$ is the solution set.

The $1^{\text {st }}$ eqn con be rearranged

$$
\begin{aligned}
2 x-y=-1 & \Rightarrow-y=-2 x-1 \\
& \Rightarrow y=2 x+1 \quad \text { the set } \text { comdt }
\end{aligned}
$$ condition

The $2^{\text {nd }}$ eqn can be rearranged

$$
\begin{aligned}
-4 x+2 y=2 \Rightarrow 2 y & =4 x+2 \text { also the } \\
y & =2 x+1
\end{aligned} \quad \text { so r condition }
$$

The Geometry of 2 Equations with 2 Variables

Figure: The system $x-y=-1$ and $2 x+y=3$ with solution set $\{(2 / 3,5 / 2)\}$. These equations represent lines that intersect at one point.

The Geometry of 2 Equations with 2 Variables

Figure: The system $x-y=-1$ and $2 x-2 y=-2$ with solution set $\{(x, y) \mid y=x+1\}$. Both equations represent the same line which share all common points as solutions.

The Geometry of 2 Equations with 2 Variables

Figure: The system $x-y=-1$ and $2 x-2 y=2$ with solution set \emptyset. These equations represent parallel lines having no common points.

Theorem

A linear system of equations has exactly one of the following:
i No solution, or
ii Exactly one solution, or
iii Infinitely many solutions.

Terms: A system is
consistent if it has at least one solution (cases ii and iii), and inconsistent if is has no solutions (case i).

Two critical questions about any linear system are: (1) Does it have a solution? (existence), and (2) If it has a solution, is there only one? (uniqueness)

Matrices

Definition: A matrix is a rectangular array of numbers. It's size (a.k.a. dimension/order) is $m \times n$ (read " m by n ") where m is the number of rows and n is the number of columns the matrix has.

Examples:

$$
\begin{array}{rr}
3,00
\end{array}\left[\begin{array}{cccc}
2 & 0 & -1 & 3 \\
1 & 1 & 13 & -4 \\
12 & -3 & 2 & -2
\end{array}\right], \quad \begin{array}{cc}
3,0 & {\left[\begin{array}{cc}
2 & 0 \\
4 & 4 \\
3 & -5
\end{array}\right]} \\
3 \times 4 & 3 \times 2
\end{array}
$$

Linear System: Coefficient Matrix

Given any linear system of equations, we can associate two matrices with the system. These are the coefficient matrix and the augmented matrix ${ }^{1}$.

Example: $\begin{gathered}x_{1}+2 x_{2}-x_{3}=-4 \\ 2 x_{1}+x_{3}=7 \\ x_{1}+x_{2}+x_{3}=6\end{gathered}$
Coed. matrix has m rows where $m=\#$ equations n columns when $n=\#$ variables

It contains the coefficients

$$
\left[\begin{array}{rrr}
1 & 2 & -1 \\
2 & 0 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

[^0]Linear System: Augmented Matrix
Given any linear system of equations, we can associate two matrices with the system. These are the coefficient matrix and the augmented matrix.

Example:

$$
\begin{aligned}
x_{1}+2 x_{2}-x_{3} & =-4 \\
2 x_{1} & +x_{3}
\end{aligned}=7
$$

Augmented has m ross $m=\#$ of eons
$n+1$ columns $n=\#$ variables
Extra column for the sight side

$$
\left[\begin{array}{cccc}
1 & 2 & -1 & -4 \\
2 & 0 & 1 & 7 \\
1 & 1 & 1 & 6
\end{array}\right]
$$

Legitimate Operations for Solving a System

We can perform three basic operation without changing the solution set of a system. These are

- swap the order of any two equations (swap),
- multiply an equation by any nonzero constant (scale), and
- replace an equation with the sum of itself and a nonzero multiple of any other equation (replace).

Some Operation Notation

Notation

- Swap equations i and j :

$$
E i \leftrightarrow E j
$$

- Scale equation i by k :

$$
k E i \rightarrow E i
$$

- Replace equation j with the sum of itself and k times equation i :

$$
k E i+E j \rightarrow E j
$$

Solve the following system of equations by elimination. Keep tabs on the augmented matrix at each step.

$$
\begin{aligned}
& x_{1}+2 x_{2}-x_{3}=-4 \\
& 2 x_{1}+x_{3}=7 \\
& x_{1}+x_{2}+x_{3}=6
\end{aligned}
$$

$$
\left[\begin{array}{rrrr}
1 & 2 & -1 & -4 \\
2 & 0 & 1 & 7 \\
1 & 1 & 1 & 6
\end{array}\right]
$$

Eliminate X,

$$
\begin{gathered}
-2 E_{1}+E_{2} \rightarrow E_{2} \\
x_{1}+2 x_{2}-x_{3}=-4 \\
-4 x_{2}+3 x_{3}=15 \\
x_{1}+x_{2}+x_{3}=6 \\
-E_{1}+E_{3} \rightarrow E_{3}
\end{gathered}
$$

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 2 & -1 & -4 \\
0 & -4 & 3 & 15 \\
1 & 1 & 1 & 6
\end{array}\right]} \\
& -2 x_{1}-4 x_{2}+2 x_{3}=8 \\
& 2 x_{1} \\
& +x_{3}=7
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}+2 x_{2}-x_{3}=-4 \\
& -4 x_{2}+3 x_{3}=15 \\
& -x_{2}+2 x_{3}=10 \\
& E_{2} \Leftrightarrow E_{3} \\
& x_{1}+2 x_{2}-x_{3}=-4 \\
& -x_{2}+2 x_{3}=10 \\
& -4 x_{2}+3 x_{3}=15 \\
& \\
& -4 E_{2}+E_{3} \rightarrow E_{3}
\end{aligned} \quad\left[\begin{array}{cccc}
1 & 2 & -1 & -4 \\
0 & -4 & 3 & 15 \\
0 & -1 & 2 & 10
\end{array}\right]
$$

$$
\begin{aligned}
x_{1}+2 x_{2}-x_{3} & =-4 \\
-x_{2}+2 x_{3} & =10 \\
-5 x_{3} & =-25
\end{aligned} \quad \begin{aligned}
& 4 x_{2}-8 x_{3}=-40 \\
& -4 x_{2}+3 x_{3}=15 \\
& -E_{2} \rightarrow E_{2} \\
& \frac{-1}{5} E_{3} \rightarrow E_{3} \\
& x_{1}+2 x_{2}-x_{3}
\end{aligned} \begin{aligned}
x_{2}-2 x_{3} & =-10 \\
x_{3} & =5
\end{aligned}\left[\begin{array}{cccc}
1 & 2 & -1 & -4 \\
0 & -1 & 2 & 10 \\
0 & 0 & -5 & -25
\end{array}\right]
$$

with substitution

$$
\begin{aligned}
x_{3}=5, \quad & x_{2}=-10+2 x_{3}=-10+10=0 \\
x_{1}= & -4-2 x_{2}+x_{3}=-4+0+5=1
\end{aligned}
$$

The solution con be written as

$$
\begin{aligned}
& x_{1}=1 \\
& x_{2}=0 \\
& x_{2}=5
\end{aligned} \quad \text { or } \quad(1,0,5) .
$$

$$
\left[\begin{array}{cccc}
1 & 2 & -1 & -4 \\
0 & 1 & -2 & -10 \\
0 & 0 & 1 & 5
\end{array}\right]
$$

We ended with this augmented matrix. Note the triangular Structure of the nonzero entries. The structure makes it easy to obtain a solution

[^0]: ${ }^{1}$ Note that like variables should be lined up vertically!

