January 9 Math 3260 sec. 56 Spring 2018

In a certain city, ABC shipping has one receiving (A) and two distribution hubs (B & C). On a given day, 80 packages enter center A and will be distributed to hubs B and C for delivery. Twenty packages will go to a major client from hub C, the rest are to be distributed in quantities x_1, \ldots, x_4 among the hubs and out for delivery.

Motivating Example

Equations for Package Quantities

Assuming all of the packages are delivered to customers outside of the shipping company, the quantities x_1, \ldots, x_4 have to satisfy the equations

Questions

- ▶ Is there a set of numbers $x_1, ..., x_4$ that satisfy all of the equations?
- If there is a set of numbers, is it the only one?
- ▶ If we could find numbers $x_1, ..., x_4$, and then the input 80 changed (say on another day), do we have to do all the work again? Or is there a way to generalize our finding?

Section 1.1: Systems of Linear Equations

We begin with a linear (*algebraic*) equation in n variables $x_1, x_2, ..., x_n$ for some positive integer n.

A linear equation can be written in the form

$$a_1x_1+a_2x_2+\cdots+a_nx_n=b.$$

The numbers a_1, \ldots, a_n are called the *coefficients*. These numbers and the right side b are real (or complex) constants that are **known**.

Examples of Equations that are or are not Linear

$$2x_1 = 4x_2 - 3x_3 + 5 \text{ and } 12 - \sqrt{3}(x + y) = 0$$

$$2x_1 - 4x_2 + 3x_3 = 5$$

$$x_1 + 3x_3 = \frac{1}{x_2} \quad \text{a}$$

$$x_1 + 3x_3 = \frac{1}{x_2} \quad \text{a}$$

$$x_1 + 3x_3 = \frac{1}{x_2} \quad \text{a}$$

$$x_1 + 3x_3 = \frac{1}{x_2}$$
 and $xyz = \sqrt{w}$ is some probable of your able you able

A *Linear System* is a collection of linear equations in the same variables

$$2x_1 + x_2 - 3x_3 + x_4 = -3$$

 $-x_1 + 3x_2 + 4x_3 - 2x_4 = 8$

$$x + 2y + 3z = 4$$

 $3x + 12z = 0$
 $2x + 2y - 5z = -6$

Some terms

- ▶ A **solution** is a list of numbers $(s_1, s_2, ..., s_n)$ that reduce each equation in the system to a true statement upon substitution.
- A solutions set is the set of all possible solutions of a linear system.
- Two systems are called equivalent if they have the same solution set.

An Example

$$2x - y = -1$$

$$-4x + 2y = 2$$
(a) Show that (1,3) is a solution. (1,3) mans $x=1$ and $y=3$

$$15^{L}$$
 eqn: $2(1) - 1(3) = 2 - 3 = -1$
The eqn is $-1 = -1$ an identity

An Example Continued

$$\begin{array}{rcl}
2x & - & y & = & -1 \\
-4x & + & 2y & = & 2
\end{array}$$

(b) Note that $\{(x,y)|y=2x+1\}$ is the solution set.

The 1st eqn can be rearranged as
$$2x-y=-1 \implies -y=-2x-1 \quad \text{this equivariant}$$

$$\Rightarrow y=2x+1 \quad \text{the condition}$$

The Geometry of 2 Equations with 2 Variables

Figure: The system x - y = -1 and 2x + y = 3 with solution set $\{(2/3, 5/2)\}$. These equations represent lines that intersect at one point.

The Geometry of 2 Equations with 2 Variables

Figure: The system x - y = -1 and 2x - 2y = -2 with solution set $\{(x,y)|y=x+1\}$. Both equations represent the same line which share all common points as solutions.

The Geometry of 2 Equations with 2 Variables

Figure: The system x - y = -1 and 2x - 2y = 2 with solution set \emptyset . These equations represent parallel lines having no common points.

Theorem

A linear system of equations has exactly one of the following:

- i No solution, or
- ii Exactly one solution, or
- iii Infinitely many solutions.

Terms: A system is

consistent if it has at least one solution (cases ii and iii), and **inconsistent** if is has no solutions (case i).

Two critical questions about any linear system are: (1) Does it have a solution? (existence), and (2) If it has a solution, is there only one? (uniqueness)

Matrices

Definition: A matrix is a rectangular array of numbers. It's **size** (a.k.a. dimension/order) is $m \times n$ (read "m by n") where m is the number of rows and n is the number of columns the matrix has.

Examples: 4 chains 2 columns

300
$$\begin{bmatrix} 2 & 0 & -1 & 3 \\ 1 & 1 & 13 & -4 \\ 12 & -3 & 2 & -2 \end{bmatrix}$$
, 300 $\begin{bmatrix} 2 & 0 \\ 4 & 4 \\ 3 & -5 \end{bmatrix}$

Linear System: Coefficient Matrix

Given any linear system of equations, we can associate two matrices with the system. These are the **coefficient** matrix and the **augmented** matrix¹.

¹Note that like variables should be lined up vertically! ←□ → ←● → ← ≥ → ← ≥ → へへ

Linear System: Augmented Matrix

Given any linear system of equations, we can associate two matrices with the system. These are the coefficient matrix and the augmented matrix.

Example:
$$2x_1 + 2x_2 - x_3 = -4$$

$$2x_1 + x_3 = 7$$

$$x_1 + x_2 + x_3 = 6$$

$$x_2 + x_3 + x_4 + x_5 + x_5$$

Legitimate Operations for Solving a System

We can perform three basic operation without changing the solution set of a system. These are

- swap the order of any two equations (swap),
- multiply an equation by any nonzero constant (scale), and
- replace an equation with the sum of itself and a nonzero multiple of any other equation (replace).

Some Operation Notation

Notation

► Swap equations *i* and *j*:

$$Ei \leftrightarrow Ej$$

Scale equation i by k:

$$kEi \rightarrow Ei$$

► Replace equation *j* with the sum of itself and *k* times equation *i*:

$$kEi + Ej \rightarrow Ej$$