July 10 Math 1190 sec. 51 Summer 2017

Section 3.4: Newton's Method

Consider a function f that is differentiable on an interval (a, b). If there exists a root, some number α such that

$$
f(\alpha)=0,
$$

in this interval, then Newton's Method provides an iterative scheme that may be able to find this number (at least with some degree of accuracy).

Iterative Scheme for Newton's Method

We start with a guess x_{0}. Then set

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

Similarly, we can find a tangent to the graph of f at $\left(x_{1}, f\left(x_{1}\right)\right)$ and update again

$$
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)} .
$$

Newton's Iteration Formula

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}, \quad n=1,2,3, \ldots
$$

The sequence begins with a starting guess x_{0} expected to be near the desired root.

Example: Equilibrium Population

If a population of animals (e.g. rabbits) changes at a rate jointly proportional to

- the current population, and
- the difference between the current population and the capacity of the environment
then that population (or more accurately population density) satisfies the logistic differential equation

$$
y \frac{d x}{d t}=k x(M-x) .
$$

x-population density, k-a (scaled) net birth rate, M-a limit on the population that can be supported by the environment.

Example: Equilibrium Population
Suppose that individuals emigrate at a rate $E(x)$ where

$$
E(x)=a x e^{-\frac{x}{M}} \quad(\mathrm{a} \text { is constant) }, \quad x \geq 0 .
$$

$$
* \frac{-x}{m}=\frac{-1}{m} x
$$

Show that the emigration rate is maximum when $x=M$.
we con find the critical numbers) of E.

$$
\begin{aligned}
E^{\prime}(x) & =a \cdot 1 \cdot e^{\frac{-x}{M}}+a x e^{\frac{-x}{M}} \cdot\left(\frac{-1}{m}\right) \\
& =a e^{\frac{-x}{M}}\left(1-\frac{1}{m} x\right)
\end{aligned}
$$

$E^{\prime}(x)$ is never undefined.

$$
\begin{aligned}
& E^{\prime}(m)=0 \Rightarrow a e^{\frac{-x}{m}}\left(1-\frac{1}{m} x\right)=0 \\
& \\
& \quad e^{\frac{-x}{m}}>0 \quad 1-\frac{1}{m} x=0 \Rightarrow x=M
\end{aligned}
$$

we wont to verity that E is maximum when $x=M$. well use the $2^{\text {nd }}$ derivative test:

$$
\begin{aligned}
E^{\prime \prime}(x) & =a e^{\frac{-x}{m}}\left(\frac{-1}{m}\right)-a\left(\frac{1}{m}\right)\left(1 \cdot e^{\frac{-x}{m}}+x e^{\frac{-x}{m}} \cdot\left(\frac{-1}{m}\right)\right) \\
& =-a \frac{1}{m} e^{\frac{-x}{m}}-a \frac{1}{m} e^{\frac{-x}{m}}+a\left(\frac{1}{m}\right)^{2} x e^{\frac{-x}{m}} \\
E^{\prime \prime}(x) & =-2 a\left(\frac{1}{m}\right) e^{\frac{-x}{m}}+a\left(\frac{1}{m}\right)^{2} x e^{\frac{-x}{m}}
\end{aligned}
$$

$$
\begin{aligned}
& E^{\prime \prime}(x)=\frac{a}{m} e^{\frac{-x}{m}}\left(-2+\frac{1}{m} x\right) \\
& E^{\prime \prime}(m)=\frac{a}{m} e^{\frac{-m}{m}}\left(-2+\frac{1}{m} \cdot M\right)=-\frac{a}{m} e^{-1}<0
\end{aligned}
$$

So E takes a maximum at the critical number M by the $2^{\text {nd }}$ derivative test.

Example: Equilibrium Population
With emigration, the new model for the population is

$$
\frac{d x}{d t}=k x(M-x)-a x e^{-\frac{x}{M}} .
$$

An Equilibrium population is one that doesn't change in time.
Find a function $f(x)$ whose root would be an equilibrium population.
If x doesn't change, then $\frac{d x}{d t}=0$.
we want $0=k x(n-x)-a x e^{\frac{-x}{m}}$ s. tole

$$
f(x)=k x(m-x)-a x e^{\frac{-x}{m}}
$$

Example: Equilibrium Population
Identify the Newton's Method formula that can be used to find the equilibrium population if $k=M=1$ and $a=\frac{1}{2}$.

$$
\text { for } \begin{aligned}
k & =1, M=1, \quad a=\frac{1}{2} \\
f(x) & =x(1-x)-\frac{1}{2} x e^{-x} \\
f^{\prime}(x) & =1-x-x-\frac{1}{2} e^{-x}-\frac{1}{2} x e^{-x} \cdot(-1) \\
& =1-2 x-\frac{1}{2} e^{-x}+\frac{1}{2} x e^{-x}
\end{aligned}
$$

Estimating Square Roots

Suppose we wish to approximate the square root of a positive number a. Newton's Method provides a scheme for doing this.

Assuming that \sqrt{a} is NOT already known, define a simple function $f(x)$ whose positive root would be the true value of \sqrt{a}.

$$
\begin{aligned}
& \text { The simplest } f \text { is } \\
& \qquad f(x)=x^{2}-a
\end{aligned}
$$

Estimating Square Roots
Write the Newton's Method scheme for finding \sqrt{a}.

$$
\begin{gathered}
f(x)=x^{2}-a, f^{\prime}(x)=2 x \\
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{x_{n}^{2}-a}{2 x_{n}} \\
x_{n+1}=x_{n}-\left(\frac{x_{n}^{2}}{2 x_{n}}-\frac{a}{2 x_{n}}\right)=x_{n}-\frac{1}{2} x_{n}+\frac{a}{2 x_{n}} \\
x_{n+1}=\frac{1}{2} x_{n}+\frac{a}{2 x_{n}}
\end{gathered}
$$

Estimating Square Roots
Using an initial guess of $x_{0}=1$, compute the iterates x_{1} and x_{2} that approximate $\sqrt{2}$.

$$
\begin{aligned}
x_{n+1} & =\frac{1}{2} x_{n}+\frac{a}{2 x_{n}} \text { for } a=2 \\
x_{n+1} & =\frac{1}{2} x_{n}+\frac{2}{2 x_{n}} \\
x_{n+1} & =\frac{1}{2} x_{n}+\frac{1}{x_{n}} \\
x_{1} & =\frac{1}{2} x_{0}+\frac{1}{x_{0}} \\
& =\frac{1}{2}(1)+\frac{1}{1}=\frac{1}{2}+1=\frac{3}{2}
\end{aligned}
$$

$$
\begin{aligned}
x_{2} & =\frac{1}{2} x_{1}+\frac{1}{x_{1}} \\
& =\frac{1}{2}\left(\frac{3}{2}\right)+\frac{1}{\frac{3}{2}} \\
& =\frac{3}{4}+\frac{2}{3}=\frac{9}{12}+\frac{8}{12}=\frac{17}{12} \\
x_{1} & =\frac{3}{2} \text { ond } x_{2}=\frac{17}{12}
\end{aligned}
$$

Square Root of 2

With $x_{0}=1$, the scheme

$$
x_{n+1}=\frac{1}{2} x_{n}+\frac{1}{x_{n}}
$$

gives

$$
\begin{aligned}
& x_{1}=\frac{3}{2}=1.50000 \\
& x_{2}=\frac{17}{12}=1.41667 \\
& x_{3}=\frac{577}{408}=1.41422
\end{aligned}
$$

The built in square root function on the TI-89 gives

$$
\sqrt{2}=1.41421, \quad \text { and } \quad\left|\sqrt{2}-\frac{577}{408}\right|=2 \cdot 10^{-6}
$$

Question

Suppose a decimal approximation to the number $\sqrt[3]{7}$ is needed (meaning that $\sqrt[3]{7}$ is NOT already known).

Which function f and initial iterate x_{0} could be used with Newton's method to find such an approximation?
(a) $f(x)=x-\sqrt[3]{7}, \quad x_{0}=7$
(b) $f(x)=x^{3}-7, \quad x_{0}=\sqrt[3]{7}$
thoo op dort mole sensen
dore
(c) $f(x)=x^{3}-7, \quad x_{0}=2$
(d) $f(x)=x^{2}-7, \quad x_{0}=1$

Section 4.1: Related Rates

Motivating Example: A spherical balloon is being filled with air. Suppose that we know that the radius is increasing in time at a constant rate of $2 \mathrm{~mm} / \mathrm{sec}$. Can we determine the rate at which the surface area of the balloon is increasing at the moment that the radius is 10 cm ?

Figure: Spherical Balloon

Surface area changes as radius changes

Figure: As a balloon inflates, the radius, surface area, and volume all change with time. Time is independent. Surface area depends on radius which in turn depends on time. $S=S(r)=S(r(t))$

Example Continued...
Suppose that the radius r and surface area $S=4 \pi r^{2}$ of a sphere are differentiable functions of time. Write an equation that relates

By the choinrule

$$
\left.\begin{array}{l}
\frac{d S}{d t}=\frac{d S}{d r} \cdot \frac{d r}{d t} \\
\frac{d S}{d r}=4 \pi(2 r)=8 \pi r
\end{array}\right\} \Rightarrow \frac{d S}{d t}=8 \pi r \frac{d r}{d t}
$$

Back to Our Balloon
Given this result, find the rate at which the surface area is changing when the radius is 10 cm .

The incuosing rate of radius of $2 \mathrm{~mm} / \mathrm{sec}$ is rote of change of r-ie. $\frac{d r}{d t}$.
we have $\frac{d r}{d t}=2 \frac{\mathrm{~mm}}{\mathrm{sec}}$ and were intencet in the moment when $r=10 \mathrm{~cm}=100 \mathrm{~mm}$
$\frac{d S}{d t}=8 \pi r \frac{d r}{d t}$ when $r=100 \mathrm{~mm}$

$$
\frac{d S}{d t}=8 \pi(100 \mathrm{~mm}) \cdot 2 \frac{\mathrm{~mm}}{\mathrm{sec}}=1600 \pi \frac{\mathrm{~mm}^{2}}{\mathrm{sec}}
$$

Sis increasing at a rote of $1600 \pi \mathrm{~mm}^{2}$ per sec.

Example

A right circular cone of height h and base radius r has volume

$$
V=\frac{\pi}{3} r^{2} h
$$

(a) Find $\frac{d V}{d t}$ in terms of $\frac{d h}{d t}$ if r is constant.

$$
\begin{gathered}
\frac{d V}{d t}=\frac{d V}{d h} \cdot \frac{d h}{d t}, \quad \frac{d V}{d h}=\frac{\pi}{3} r^{2} \cdot 1 \\
\frac{d V}{d t}=\frac{\pi}{3} r^{2} \frac{d h}{d t}
\end{gathered}
$$

Example Continued...

$$
V=\frac{\pi}{3} r^{2} h
$$

Question (b) Find $\frac{d V}{d t}$ in terms of $\frac{d r}{d t}$ if h is constant.
(a) $\frac{d V}{d t}=\frac{2 \pi}{3} r \frac{d r}{d t}$

$$
\frac{d V}{d t}=\frac{d V}{d r} \frac{d r}{d t}
$$

(b) $\frac{d V}{d t}=\frac{\pi}{3} r^{2} \frac{d r}{d t}$
(c) $\frac{d V}{d t}=\frac{\pi}{3} r^{2} h \frac{d r}{d t}$

$$
\frac{d V}{d r}=\frac{\pi}{3} h(2 r)
$$

(d) $\frac{d V}{d t}=\frac{2 \pi}{3} r h \frac{d r}{d t}$

And Continued Further...

$$
V=\frac{\pi}{3} r^{2} h
$$

(c) Find $\frac{d V}{d t}$ in terms of $\frac{d h}{d t}$ and $\frac{d r}{d t}$ assuming neither r nor h is constant.

We reed the product rule on $r^{2} h$

$$
\begin{aligned}
& \frac{d V}{d t}=\frac{d V}{d r} \frac{d r}{d t}+\frac{d V}{d h} \frac{d h}{d t} \\
& \frac{d}{d t} V=\frac{d}{d t}\left(\frac{\pi}{3} r^{2} h\right) \\
& \frac{d V}{d t}=\frac{\pi}{3}(2 r) \frac{d r}{d t} h+\frac{\pi}{3} r^{2} \cdot 1 \frac{d h}{d t}=\frac{2 \pi}{3} r h \frac{d r}{d t}+\frac{\pi}{3} r^{2} \frac{d h}{d t}
\end{aligned}
$$

Example

Suppose x and y are differentiable functions of time and that

$$
z=x y-2 \sin x
$$

We have the following information about x and y

$$
x(1)=0, \quad x^{\prime}(1)=2, \quad y(1)=3, \quad \text { and } \quad y^{\prime}(1)=-1
$$

Find $\frac{d z}{d t}$ when $t=1$.

Implicit diff:

$$
\frac{d}{d t} z=\frac{d}{d t}(x y-2 \sin x)
$$

$$
\begin{aligned}
& \frac{d z}{d t}=\frac{d x}{d t} y+x \frac{d y}{d t}-2 \cos x \cdot \frac{d x}{d t} \\
& \frac{d z}{d t}=y \frac{d x}{d t}+x \frac{d y}{d t}-2 \frac{d x}{d t} \cos x
\end{aligned}
$$

when $t=1$

$$
\begin{aligned}
& \frac{d z}{d t}=3(2)+0(-1)-2(2) \cos (0) \\
&=6-4=2 \\
& \text { i.e. } \quad z^{\prime}(1)=2
\end{aligned}
$$

Question

Suppose x and y depend on time t and $x^{2}+y^{2}=5$. When $t=2$

$$
x=1, \quad y=-2, \quad \text { and } \quad \frac{d y}{d t}=3 .
$$

When $t=2, \quad \frac{d x}{d t}=$

$$
\begin{gathered}
\frac{d}{d t}\left(x^{2}+y^{2}\right)=\frac{d}{d t} 5 \\
2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=0 \\
2(1) \frac{d x}{d t}+2(-2)(3)=0
\end{gathered}
$$

(a) $\frac{1}{2}$

(c) $\frac{17}{2}$

Example
A 10 foot ladder rests against a wall. The base of the ladder begins to slide along the ground. At the moment when the base of the ladder is 6 feet from the wall, it is sliding at a rate of 1 inch per second. At what rate is the top of the ladder sliding down the wall at the moment when the base is 6 feet from the wall?

Let's introduce variables for changing quantities.

Let x be the distance between ladder base and wall in feet.
Let y be the distance between the top of the ladder and the ground also in feet.
were given $\frac{d x}{d t}=1 \frac{\text { in }}{\sec }$ when $x=6 \mathrm{ft}$

$$
=\frac{1}{12} \frac{\mathrm{ft}}{\mathrm{sec}}
$$

The question is: what is $\frac{d y}{d t}$ when $x=6 \mathrm{ft}$?
From the geometry, $x^{2}+y^{2}=10^{2}$ at all times.
Using implicit differentiation

$$
\begin{gathered}
\frac{d}{d t}\left(x^{2}+y^{2}\right)=\frac{d}{d t} 10^{2}=0 \\
2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=0
\end{gathered}
$$

$$
x \frac{d x}{d t}+y \frac{d y}{d t}=0
$$

we need to know y when $x=6 \mathrm{ft}$.

$$
x^{2}+y^{2}=10^{2} \Rightarrow 6^{2}+y^{2}=10^{2} \Rightarrow y^{2}=100-36=64
$$

$y=8 \mathrm{ft}$ when $x=6 \mathrm{ft}$
At this moment

$$
\begin{aligned}
& 6 f t\left(\frac{1}{12} \frac{f t}{s e c}\right)+8 f t \frac{d y}{d t}=0 \\
& \frac{1}{2} \frac{f t^{2}}{s e^{c}}+8 f t \frac{d y}{d t}=0
\end{aligned}
$$

$$
\begin{aligned}
& 8 f t \frac{d y}{d t}=-\frac{1}{2} \frac{f t^{2}}{\sec } \\
& \frac{d y}{d t}=\frac{-1}{2} \frac{\frac{f t^{2}}{\sec }}{8 f t}=\frac{-1}{16} \frac{f t}{\mathrm{sec}}
\end{aligned}
$$

y is decrasing at a rate of $\frac{1}{16} \mathrm{ft}$ pe see and.
That is, the top is falling at a rate of $3 / 4$ inches per second at that moment.

General Approach to Solving Related Rates Prob.

- Identifty known and unknown quantities and assign variables.
- Create a diagram if possible.
- Use the diagram, physical science, and mathematics to connect known quantities to those being sought.
- Relate the rates of change using implicit differentiation.
- Substitute in known quantities and solve for desired quantities.

Example
A reservoir in the shape of an inverted right circular cone has height 10 m and base radius 6 m . If water is flowing into the reservoir at a constant rate of $50 \mathrm{~m}^{3} / \mathrm{min}$. What is the rate at which the height of the water is increasing when the height is 5 m ?

At a given moment, then is a smaller come of water inside the reservoir.
Let r be the base radius and h the hight of the water, both in meter.
were given a rate of change of Volume

$$
\frac{d V}{d t}=50 \frac{m^{3}}{\mathrm{~min}^{\prime}} \text { for volume } V
$$

The question is: what is $\frac{d h}{d t}$ when $h=S_{m}$?

From geometry $V=\frac{\pi}{3} r^{2} h$. We con reduce this to a function without r using simile triangles.

$$
\frac{r}{h}=\frac{6}{10}=\frac{3}{5} \Rightarrow r=\frac{3}{5} h
$$

So

$$
\begin{aligned}
V & =\frac{\pi}{3}\left(\frac{3}{5} h\right)^{2} h=\frac{\pi}{3} \frac{9 h^{2}}{25} h \\
& =\frac{3 \pi}{25} h^{3}
\end{aligned}
$$

Implicit diff:

$$
\begin{aligned}
& \frac{d}{d t} V=\frac{d}{d t}\left(\frac{3 \pi}{2 s} h^{3}\right) \\
& \frac{d V}{d t}=\frac{3 \pi}{2 s}\left(3 h^{2}\right) \frac{d h}{d t}=\frac{9 \pi}{25} h^{2} \frac{d h}{d t}
\end{aligned}
$$

when $h=5 \mathrm{~m}$

$$
\begin{aligned}
50 \frac{m^{3}}{\min } & =\frac{9 \pi}{25}(5 \mathrm{~s})^{2} \frac{d h}{d t} \\
& =\frac{9 \pi}{25}\left(25 \mathrm{~m}^{2}\right) \frac{d h}{d t} \\
& =9 \pi \mathrm{~m}^{2} \frac{d h}{d t}
\end{aligned}
$$

$$
\frac{d h}{d t}=\frac{50 \frac{\mathrm{~m}^{3}}{\mathrm{~min}}}{9 \pi \mathrm{~m}^{2}}=\frac{50}{9 \pi} \frac{\mathrm{~m}}{\mathrm{~min}}
$$

The height is increasing at a rate of $\frac{50}{9 \pi}$ m per minute when the height is 5 m .

Let's Do One Together

A child 1 m tall is walking near a street lamp that is 6 m tall. If she walks away from the street light at a constant rate of $20 \mathrm{~m} / \mathrm{min}$, how fast is her shadow lengthening?

Let's start with a diagram.

Figure: Let x be the child's distance from the lamp and s the length of her shadow.

Question

Making use of similar triangles, s and x are related by the equations

Question

Given the relationship $\frac{s}{1}=\frac{s+x}{6}, \frac{d s}{d t}$ is related to $\frac{d x}{d t}$ by
(a) $\frac{d s}{d t}=\frac{1}{5} \frac{d x}{d t}$

$$
G s=s+x
$$

(b) $\frac{d s}{d t}=\frac{1}{6} \frac{d x}{d t}$

$$
6 s-s=x
$$

$$
5 s=x
$$

(c) $\quad \frac{d s}{d t}=5 \frac{d x}{d t}$

$$
S=\frac{1}{5} x
$$

$$
\frac{d s}{d t}=\frac{1}{5} \frac{d x}{d t}
$$

(d) $\frac{d s}{d t}=6 \frac{d x}{d t}$

Question

Recalling that the child was walking away at a constant rate of 20 $\mathrm{m} / \mathrm{min}$, how fast is her shadow lengthening?
(a) $20 \mathrm{~m} / \mathrm{min}$

$$
\frac{d x}{d t}=20 \frac{\mathrm{~m}}{\mathrm{~min}}
$$

(b) $3.33 \mathrm{~m} / \mathrm{min}$

$$
\frac{d s}{d t}=\frac{1}{5} \frac{d x}{d t}=\frac{1}{s}\left(20 \frac{\mathrm{~m}}{\mathrm{~mm}}\right)
$$

(c) $5 \mathrm{~m} / \mathrm{min}$
$=4 \frac{m}{m \cdot n}$
(d) $4 \mathrm{~m} / \mathrm{min}$

