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Section 8.5: Alternating Series and Absolute Convergence

Theorem: (The Alternating Series Test) Let > (—1)"*"a, be an

n=1
alternating series. If

(I) nll—)moo an - O

and (i) apy1 <ap foralln,

then the series is convergent.
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Example

Determine the convergence or divergence of the series
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An Observation

Note: If property (i) doesn’t hold, i.e. if lim,_., an # 0, then the series
will definitely diverge by the divergence test.

However, if the first condition DOES hold, but the second does not,
the test is inconclusive. The series may converge or it may diverge.
Some other test must be used.
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A Strange Case: (an 1 < ap is required)

Consider the series

0 ﬁ, n odd
> (-1)"a, where a,=
n=1 2 neven

n’

It is easy to see that lim,_,, b, = 0. But note that the terms a,, are

1111 1 1
{an}_{1,1’4,2’9’3716,4"”}

So that

which is divergent.
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Another Strange Case:

Consider the series

o ﬁ, n odd
> (-1)"a, where a,=
n—1 8 n even

nd’
It is easy to see that lim,_,, a, = 0. But note that the terms a, are
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So that
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which is convergent.
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Different Types of Convergence for Series with Mixed

Signs
Note that
- 1 1 1 1
J— n_1 —_ = PR —_— = o ..
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but
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n=1 n=1
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Absolute Convergence

Definition: A series ) a, is called absolutely convergent if the
series of absolute values

o0

> lan| = |a1| + |az| + |as| + - -

n=1

is convergent.

For Example: The series

1
Z(—1 )1 2 s absolutely convergent.

n=1

The alternating harmonic series is NOT absolutely convergent.
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Conditional Convergence

Definition: A series that is convergent but is not absolutely convergent
is called conditionally convergent.

The alternating harmonic series IS conditionally convergent.
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Theorem on Absolute Convergence

Theorem: If a series is absolutely convergent, it is convergent.

Remark: If we can show that a series is absolutely convergent, then
we can conclude that it is convergent.

Remark: Of course, this doesn’t mean that a series that isn’t
absolutely convergent must diverge. It may be conditionally
convergent, and some effort may be required to determine its nature.
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Example
Determine if the series is convergent or divergent.
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Example

Determine if the series is absolutely convergent, conditionally
convergent or divergent. \
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Section 8.6: The Ratio Test and The Root Test

In this section, we introduce two tests that may be used to conclude
absolute convergence. We need not consider series with all one sign
(all positive or all negative terms). But in general, we wish to consider

any series
o
Z an Where a, # 0.

n=1
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Theorem: The Ratio Test (a test for abs. convergence)
Theorem: Let ) a, be a series of nonzero terms, and define the

number L by

an41
an

lim =L
n—o0

If
(i) L < 1, the series is absolutely convergent;

(i) L > 1, the series is divergent;
(ii) L =1, the test is inconclusive.

Remark: In the case L = 1, the series may be absolutely convergent,
conditionally convergent, or divergent. This test truly fails, and some
other test or analysis is necessary to draw any conclusion.

()
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Examples
Determine if the series is absolutely convergent, conditionally
convergent, or divergent.
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