## July 11 Math 2306 sec 52 Summer 2016

## Section 12: LRC Series Circuits

## Potential Drops Across Components:



Figure: Kirchhoff's Law: The charge $q$ on the capacitor satisfies $L q^{\prime \prime}+R q^{\prime}+\frac{1}{C} q=E(t)$.

## Steady and Transient States

Given a nonzero applied voltage $E(t)$, we obtain an IVP with nonhomogeneous ODE for the charge $q$

$$
L q^{\prime \prime}+R q^{\prime}+\frac{1}{C} q=E(t), \quad q(0)=q_{0}, \quad q^{\prime}(0)=i_{0}
$$

From our basic theory of linear equations we know that the solution will take the form

$$
q(t)=q_{c}(t)+q_{p}(t)
$$

With $R>0, \lim _{t \rightarrow \infty} q_{c}(t)=0$. Hence $q_{c}$ is called the transient state charge of the system.

The function $q_{p}$ is called the steady state charge of the system.

## Example

An LRC series circuit has inductance 0.5 h , resistance 10 ohms, and capacitance $4 \cdot 10^{-3} \mathrm{f}$. Find the steady state charge of the system if the applied force is $E(t)=5 \cos (10 t)$.
We found the equation in standard form to be

$$
q^{\prime \prime}+20 q^{\prime}+500 q=10 \cos (10 t)
$$

whose complementary solution
$q_{c}=c_{1} e^{-10 t} \cos (20 t)+c_{2} e^{-10 t} \sin (20 t)$. We sought a particular solution of the form

$$
q_{p}=A \cos (10 t)+B \sin (10 t)
$$

and upon substitution into the ODE arrived at

$$
[400 A+200 B] \cos (10 t)+[-200 A+400 B] \sin (10 t)=10 \cos (10 t)
$$

Matching

$$
\begin{aligned}
400 A+200 B & =10 \\
-200 A+400 B & =0 \quad \Rightarrow 200 A=400 B \Rightarrow A=2 B
\end{aligned}
$$

So $\quad 400(2 B)+200 B=10$

$$
\begin{aligned}
1000 B & =10 \Rightarrow B=\frac{10}{1000}=\frac{1}{100} \\
A & =2\left(\frac{1}{100}\right)=\frac{1}{50}
\end{aligned}
$$

The steady state charge is

$$
g_{p}=\frac{1}{50} \cos (10 t)+\frac{1}{100} \sin (10 t) .
$$

## Section 13: The Laplace Transform

A quick word about functions of 2-variables:
Suppose $G(s, t)$ is a function of two independent variables ( $s$ and $t$ ) defined over some rectangle in the plane $a \leq t \leq b, c \leq s \leq d$. If we compute an integral with respect to one of these variables, say $t$,

$$
\int_{\alpha}^{\beta} G(s, t) d t
$$

- the result is a function of the remaining variable $s$, and
- the variable $s$ is treated as a constant while integrating with respect to $t$.

For example, assume $s \neq 0$ and compute

$$
\begin{aligned}
& \int_{1}^{2} \cos (s t) d t \quad \begin{array}{r}
\text { Treat } s \text { as constant while } \\
\text { integrating. }
\end{array} \\
& =\int_{s}^{2 s^{\prime}} \cos (u) \frac{1}{s} d u \quad \text {-sub } \\
& =\frac{1}{s} \int_{s}^{2 s} \cos u d u \quad u=s t \\
& =\left.\frac{1}{s} \sin u\right|_{s} ^{2 s}=\frac{1}{s} \sin (2 s)-\frac{1}{s} \sin (s)
\end{aligned} \quad \begin{aligned}
& \text { when } t=1, u=s d t \Rightarrow d t=\frac{1}{s} d u \\
& t=2, u=2 s
\end{aligned}
$$

## Integral Transform

An integral transform is a mapping that assigns to a function $f(t)$ another function $F(s)$ via an integral of the form

$$
\int_{a}^{b} K(s, t) f(t) d t .
$$

- The function $K$ is called the kernel of the transformation.
- The limits $a$ and $b$ may be finite or infinite.
- The integral may be improper so that convergence/divergence must be considered.
- This transform is linear in the sense that

$$
\int_{a}^{b} K(s, t)(\alpha f(t)+\beta g(t)) d t=\alpha \int_{a}^{b} K(s, t) f(t) d t+\beta \int_{a}^{b} K(s, t) g(t) d t .
$$

## The Laplace Transform

Definition: Let $f(t)$ be defined on $[0, \infty)$. The Laplace transform of $f$ is denoted and defined by

$$
\mathscr{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t=F(s) .
$$

The domain of the transformation $F(s)$ is the set of all $s$ such that the integral is convergent.

Note: The kernel for the Laplace transform is $K(s, t)=e^{-s t}$.
Note 2: If we take $s$ to be real-valued, then

$$
\lim _{t \rightarrow \infty} e^{-s t}=0 \text { if } s>0, \text { and } \lim _{t \rightarrow \infty} e^{-s t}=\infty \text { if } s<0 \text {. }
$$

Find the Laplace transform of $f(t)=1$
$B_{y}$ definition $y\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t \Rightarrow \mathcal{L}\{1\}=\int_{0}^{\infty}-e^{-s t} \cdot 1 d t$
Consider the case $s=0$. The integral is

$$
\int_{0}^{\infty} d t=\lim _{b \rightarrow \infty} \int_{0}^{b} d t=\left.\lim _{t \rightarrow \infty} t\right|_{0} ^{b}=\lim _{b \rightarrow \infty}(b-0)=\infty \text { divergent }
$$

$S=0$ is not in the domain of $\mathscr{L}\{1\}$.

$$
\begin{aligned}
& \text { For } s \neq 0 \\
& y\{1\}=\int_{0}^{\infty} e^{-s t} d t=\lim _{b \rightarrow \infty} \int_{0}^{b} e^{-s t} d t
\end{aligned}
$$

$$
\begin{aligned}
& =\left.\lim _{b \rightarrow \infty} \frac{1}{-s} e^{-s t}\right|_{0} ^{b} \\
& =\lim _{b \rightarrow \infty} \frac{1}{-s}\left(e^{-s b}-e^{0}\right)=\frac{1}{-s}(0-1) \quad \text { if } s>0 \\
& =\frac{1}{s}
\end{aligned}
$$

So $\mathscr{L}\{1\}=\frac{1}{S}$ with domain $S>0$.
weill for go the formal limit taking notation from now on.

Find the Laplace transform of $f(t)=t$
By definition $\mathscr{L}\{t\}=\int_{0}^{\infty} e^{-s t} t d t$
If $s=0$, the interred is $\int_{0}^{\infty} t d t=\left.\frac{t^{2}}{2}\right|_{0} ^{\infty}=\infty$ divergent $s=0$ is not in the domain.

For $s \neq 0$

$$
\begin{aligned}
y\{t\} & =\int_{0}^{\infty} e^{-s t} t d t \\
& =\left.\frac{1}{s} t e^{-s t}\right|_{0} ^{\infty}-\int_{0}^{\infty} \frac{-1}{5} e^{-s t} d t
\end{aligned}
$$

By pacts

$$
\begin{array}{ll}
u=t & d u=d t \\
v=\frac{-1}{5} e^{-s t} & d v=e^{-5 t} d t
\end{array}
$$

If $s<0$, the integral diverges
For $s>0$

$$
\begin{aligned}
\mathscr{L}\{t\} & =\left.\frac{-1}{s} t e^{-s t}\right|_{0} ^{\infty}+\frac{1}{s} \int_{0}^{\infty} e^{-s t} d t \\
& =\frac{-1}{s}(0-0)+\frac{1}{s} \underbrace{\int_{0}^{\infty} e^{-s t} d t}_{\mathscr{L}\{1\}} \\
& =\frac{1}{s} \mathscr{L}\{1\}=\frac{1}{s} \cdot \frac{1}{s}=\frac{1}{s^{2}}
\end{aligned}
$$

Hence $\mathscr{L}\{t\}=\frac{1}{s^{2}}$ with domain $s>0$.

A piecewise defined function
Find the Laplace transform of $f$ defined by

$$
f(t)= \begin{cases}2 t, & 0 \leq t<10 \\ 0, & t \geq 10\end{cases}
$$

By definition

Plot of $f$


$$
\begin{aligned}
\mathscr{L}\{f(t)\} & =\int_{0}^{\infty} e^{-s t} f(t) d t \\
& =\int_{0}^{10} e^{-s t} f(t) d t+\int_{10}^{\infty} e^{-s t} f(t) d t \\
& =\int_{0}^{10} e^{-s t}(2 t) d t+\int_{10}^{\infty} e^{-s t} \cdot 0 d t=\int_{0}^{10} e^{-s t} t d t
\end{aligned}
$$

If $s=0, \quad \int_{0}^{10} 2 t d t=\left.t^{2}\right|_{0} ^{10}=100-0=100$
for $s \neq 0 \quad \int_{0}^{10} 2 e^{-s t} t d t=\quad$ use parts from the last

$$
\begin{aligned}
& =2\left[\left.\frac{-1}{s} t e^{-s t}\right|_{0} ^{10}+\frac{1}{s} \int_{0}^{10} e^{-s t} d t\right] \\
& =2\left[\left.\frac{-1}{s} t e^{-s t}\right|_{0} ^{10}+\left.\frac{1}{s}\left(\frac{-1}{5} e^{-s t}\right)\right|_{0} ^{10}\right. \\
& =2\left[\frac{-1}{s}(10) e^{-10 s}-\frac{-1}{s} \cdot 0 e^{0}+\frac{1}{s}\left(\frac{-1}{s} e^{-10 s}-\frac{-1}{s} e^{0}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =2\left[\frac{-10}{s} e^{-10 s}-\frac{1}{s^{2}} e^{-10 s}+\frac{1}{s^{2}}\right] \\
& =\frac{2}{s^{2}}-\frac{20}{s} e^{-10 s}-\frac{2}{s^{2}} e^{-10 s} \\
& \mathscr{L}\{f(t)\}=\left\{\begin{array}{l}
100, \quad s=0 \\
\frac{2}{s^{2}}-\frac{20}{s} e^{-10 s}-\frac{2}{s^{2}} e^{-10 s}, s \neq 0
\end{array}\right.
\end{aligned}
$$

## The Laplace Transform is a Linear Transformation

Some basic results include:

- $\mathscr{L}\{\alpha f(t)+\beta \boldsymbol{g}(t)\}=\alpha F(s)+\beta G(s)$
- $\mathscr{L}\{1\}=\frac{1}{s}, \quad s>0$
- $\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}, \quad s>0$ for $n=1,2, \ldots$
- $\mathscr{L}\left\{e^{a t}\right\}=\frac{1}{s-a}, \quad s>a$
- $\mathscr{L}\{\cos k t\}=\frac{s}{s^{2}+k^{2}}, \quad s>0$
- $\mathscr{L}\{\sin k t\}=\frac{k}{s^{2}+k^{2}}, \quad s>0$

Examples: Evaluate (the Loplace trons form of)
(a) $f(t)=\cos (\pi t)$
use $\mathcal{L}\{\cos (k t)\}=\frac{s}{s^{2}+k^{2}}$

So $\mathscr{L}\{\cos (\pi t)\}=\frac{s}{s^{2}+\pi^{2}}$

Examples: Evaluate
(b) $f(t)=2 t^{4}-e^{-5 t}+3$

$$
\begin{array}{cl}
\mathscr{L}\left\{e^{a+}\right\}=\frac{1}{s-a} & s>a \\
\mathscr{L}\{1\}=\frac{1}{s} & s>0
\end{array}
$$

$$
\begin{aligned}
& \mathcal{L}\left\{2 t^{4}-e^{-5 t}+3\right\}=\mathcal{L}\left\{2 t^{4}\right\}+\mathcal{L}\left\{-e^{-5 t}\right\}+\mathcal{L}\{3\} \\
& =2 \mathscr{L}\left\{t^{4}\right\}-\mathscr{L}\left\{e^{-5 t}\right\}+3 \mathscr{L}\{1\} \\
& =2 \frac{4!}{s^{4+1}}-\frac{1}{s-(-5)}+3 \frac{1}{5} \\
& =\frac{48}{s^{5}}-\frac{1}{s+5}+\frac{3}{s}, \quad \underset{s>0}{\downarrow}
\end{aligned}
$$

Examples: Evaluate
(c) $f(t)=(2-t)^{2}=4-4 t+t^{2}$

$$
\begin{aligned}
\mathscr{L}\left\{(2-t)^{2}\right\} & =\mathscr{L}\left\{4-4 t+t^{2}\right\} \\
& =4 \mathscr{L}\{1\}-4 \mathscr{L}\{t\}+\mathscr{L}\left\{t^{2}\right\} \\
& =4 \cdot \frac{1}{s}-4 \frac{1!}{s^{1+1}}+\frac{2!}{s^{2+1}} \\
& =\frac{4}{s}-\frac{4}{s^{2}}+\frac{2}{s^{3}}
\end{aligned}
$$ use the table

$$
\begin{aligned}
& \mathscr{L}\{1\}=\frac{1}{s} \\
& \mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}
\end{aligned}
$$

Examples: Evaluate

$$
\text { Recall } \sin ^{2} \theta=\frac{1}{2}-\frac{1}{2} \cos (2 \theta)
$$

$$
\begin{aligned}
& \text { (d) } \begin{array}{rlrl}
f(t)= & \sin ^{2} 5 t & \text { tales } \theta=s t \\
f(t)=\frac{1}{2}-\frac{1}{2} \cos (10 t) & \mathcal{L}\{1\}=\frac{1}{s} \\
\mathcal{L}\left\{\sin ^{2}(s t)\right\} & =\mathcal{L}\left\{\frac{1}{2}-\frac{1}{2} \cos (10 t)\right\} & \mathcal{L}\{\cos (k t)\}=\frac{s}{s^{2}+k^{2}} \\
& =\frac{1}{2} \mathcal{L}\{1\}-\frac{1}{2} \mathcal{L}\{\cos (10 t)\} & \left.\frac{s}{2}-\frac{S}{2} \frac{s}{s^{2}+10^{2}}=\frac{1}{2 S}-100\right)
\end{array}
\end{aligned}
$$

## Sufficient Conditions for Existence of $\mathscr{L}\{f(t)\}$

Definition: Let $c>0$. A function $f$ defined on $[0, \infty)$ is said to be of exponential order c provided there exists positive constants $M$ and $T$ such that $|f(t)|<M e^{c t}$ for all $t>T$.

Definition: A function $f$ is said to be piecewise continuous on an interval $[a, b]$ if $f$ has at most finitely many jump discontinuities on $[a, b]$ and is continuous between each such jump.

## Sufficient Conditions for Existence of $\mathscr{L}\{f(t)\}$

Theorem: If $f$ is piecewise continuous on $[0, \infty)$ and of exponential order $c$ for some $c>0$, then $f$ has a Laplace transform for $s>c$.

An example of a function that doesn't have a Laplace transform is $f(t)=e^{t^{2}}$. This function grows faster than every exponential function* $e^{c t}$.
*The graph of $y=x^{2}$ is above every line $y=c x$ for all $x>1$.

## Section 14: Inverse Laplace Transforms

Now we wish to go backwards: Given $F(s)$ can we find a function $f(t)$ such that $\mathscr{L}\{f(t)\}=F(s)$ ?

If so, we'll use the following notation

$$
\mathscr{L}^{-1}\{F(s)\}=f(t) \quad \text { provided } \quad \mathscr{L}\{f(t)\}=F(s)
$$

We'll call $f(t)$ an inverse Laplace transform of $F(s)$.

## A Table of Inverse Laplace Transforms

- $\mathscr{L}^{-1}\left\{\frac{1}{s}\right\}=1$
- $\mathscr{L}^{-1}\left\{\frac{n!}{s^{n+1}}\right\}=t^{n}$, for $n=1,2, \ldots$
- $\mathscr{L}^{-1}\left\{\frac{1}{s-a}\right\}=e^{a t}$
- $\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+k^{2}}\right\}=\cos k t$
- $\mathscr{L}^{-1}\left\{\frac{k}{s^{2}+k^{2}}\right\}=\sin k t$

The inverse Laplace transform is also linear so that

$$
\mathscr{L}^{-1}\{\alpha F(s)+\beta G(s)\}=\alpha f(t)+\beta g(t)
$$

Find the Inverse Laplace Transform
When using the table, we have to match the expression inside the brackets $\}$ EXACTLY! Algebra, including partial fraction decomposition, is often needed.

$$
\mathscr{L}^{-1}\left\{\frac{n!}{s^{n+1}}\right\}=t^{n}
$$

(a) $\mathscr{L}^{-1}\left\{\frac{1}{s^{7}}\right\}$

Note if $n=6$, then $n+1=7$

$$
\frac{1}{s^{7}}=\frac{6!}{6!} \cdot \frac{1}{s^{7}}=\frac{1}{6!} \frac{6!}{s^{7}}
$$

So $\mathscr{L}^{-1}\left\{\frac{1}{s^{7}}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{6!} \frac{6!}{s^{6+1}}\right\}=\frac{1}{6!} \mathcal{L}^{-1}\left\{\frac{6!}{s^{6+1}}\right\}=\frac{1}{6!} t^{6}$

Example: Evaluate

$$
\begin{aligned}
& \mathscr{L}^{-1}\left\{\frac{s}{s^{2}+k^{2}}\right\}=\cos (k t) \\
& \mathscr{L}^{-1}\left\{\frac{k}{s^{2}+k^{2}}\right\}=\sin (k t)
\end{aligned}
$$

(b) $\mathscr{L}^{-1}\left\{\frac{s+1}{s^{2}+9}\right\}$

$$
\begin{aligned}
& =\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+9}+\frac{1}{s^{2}+9}\right\} \\
& =\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+9}\right\}+\mathscr{L}^{-1}\left\{\frac{1}{s^{2}+9}\right\} \\
& =\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+3^{2}}\right\}+\mathscr{L}^{-1}\left\{\frac{1}{3} \frac{3}{s^{2}+3^{2}}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+3^{2}}\right\}+\frac{1}{3} \mathcal{L}^{-1}\left\{\frac{3}{s^{2}+3^{2}}\right\} \\
& =\cos (3 t)+\frac{1}{3} \sin (3 t)
\end{aligned}
$$

Example: Evaluate
We need a partial fraction
(c) $\mathscr{L}^{-1}\left\{\frac{s-8}{s^{2}-2 s}\right\}$ decamp on

$$
\begin{aligned}
& \frac{s-8}{s^{2}-2 s} \\
& \frac{s-8}{s(s-2)}=\frac{A}{s}+\frac{B}{s-2} \quad \text { clear fractions } \\
& s-8=A(s-2)+B s \\
& \text { set } s=0 \quad-8=A(-2)+B(0) \Rightarrow-8=-2 A, A=4 \\
& s=2 \quad 2-8=A(0)+B(2) \Rightarrow-6=2 B, B=-3
\end{aligned}
$$

So

$$
\begin{aligned}
\mathscr{L}^{-1}\left\{\frac{s-8}{s^{2}-2 s}\right\} & =\mathscr{L}^{-1}\left\{\frac{4}{s}-\frac{3}{s-2}\right\} \\
& =4 \mathcal{L}^{-1}\left\{\frac{1}{s}\right\}-3 \mathcal{L}^{-1}\left\{\frac{1}{s-2}\right\} \\
& =4(1)-3 e^{2 t} \\
& =4-3 e^{2 t}
\end{aligned}
$$

