July 11 Math 2306 sec 52 Summer 2016
Section 12: LRC Series Circuits
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Figure: Kirchhoff’s Law: The charge g on the capacitor satisfies
Lg" + Rq' + Lq = E(t).
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Steady and Transient States

Given a nonzero applied voltage E(t), we obtain an IVP with
nonhomogeneous ODE for the charge g

] .
Ld"+ R4 + zq=E(t), a(0)=q, q(0)=bh.

From our basic theory of linear equations we know that the solution will
take the form

q(t) = qc(t) + gp(1).

With R > 0, tlim gc(t) = 0. Hence qc is called the transient state
—00
charge of the system.

The function qp is called the steady state charge of the system.
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Example

An LRC series circuit has inductance 0.5 h, resistance 10 ohms, and
capacitance 4 - 102 f. Find the steady state charge of the system if
the applied force is E(t) = 5cos(10t).

We found the equation in standard form to be

q" +20q +500q = 10 cos(10t)

whose complementary solution
gc = cre~ % cos(20t) + c,e7 1% sin(20t). We sought a particular
solution of the form

qp = Acos(10t) + Bsin(10t)
and upon substitution into the ODE arrived at

[400A + 2008] cos(10t) + [~200A + 4008] sin(10t) = 10 cos(10t)
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The Sleady chole Chrerge. 3N

Ar = JS/D C:S(l()t) + /\_06 S\n(lb%) )
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Section 13: The Laplace Transform

A quick word about functions of 2-variables:

Suppose G(s, t) is a function of two independent variables (s and t)
defined over some rectangle inthe plane a<t< b,c < s <d. Ifwe
compute an integral with respect to one of these variables, say t,

/a ey

» the result is a function of the remaining variable s, and

» the variable s is treated as a constant while integrating with
respect to t.
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For example, assume s # 0 and compute
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Integral Transform

An integral transform is a mapping that assigns to a function f(t)
another function F(s) via an integral of the form

b
/ K(s, (1) dt.

The function K is called the kernel of the transformation.
The limits a and b may be finite or infinite.

The integral may be improper so that convergence/divergence
must be considered.

This transform is linear in the sense that

v

v

v

v

b b b
/ K(s, )(af(t) + Bg(1)) dt = a / K(s. (1) dt + 8 / K(s, )g(t) .
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The Laplace Transform

Definition: Let f(t) be defined on [0, c0). The Laplace transform of f is
denoted and defined by

L)} = / e~Sf(t) dt = F(s).

The domain of the transformation F(s) is the set of all s such that the
integral is convergent.

Note: The kernel for the Laplace transform is K(s, t) = e~ 5.

Note 2: If we take s to be real-valued, then

limest=0 ifs>0,and lime = ifs<O.

t—o00 t—o0
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Find the Laplace transform of f(t) = 1
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Find the Laplace transform of f(t) =t
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A piecewise defined function
Find the Laplace transform of f defined by
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The Laplace Transform is a Linear Transformation

Some basic results include:
» L{af(t)+ pg(t)} = aF(s) + BG(S)

v

Z{1y=1 s>0

v

L{t"y = J5, s>0forn=1,2,...

v

Z{efy =, s>a

s>0

v

Z{coskt} = 527,

s>0

v

Z{sinkt} = k2’
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Examples: Evaluate (the Legac tronsfonn of )
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Examples: Evaluate e 5(’{& = rC $>0
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Examples: Evaluate
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Examples: Evaluate Recall .20 = L - L c(26)
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Sufficient Conditions for Existence of -Z{f(t)}

Definition: Let ¢ > 0. A function f defined on [0, ) is said to be of
exponential order ¢ provided there exists positive constants M and T
such that |f(t)] < Me“ forall t > T.

Definition: A function f is said to be piecewise continuous on an
interval [a, b] if f has at most finitely many jump discontinuities on [a, b]
and is continuous between each such jump.
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Sufficient Conditions for Existence of -Z{f(t)}

Theorem: If f is piecewise continuous on [0, co) and of exponential
order ¢ for some ¢ > 0, then f has a Laplace transform for s > c.

An example of a function that doesn’t have a Laplace transform is

f(t) = e’”. This function grows faster than every exponential function*
e,

*The graph of y = x? is above every line y = cx for all x> 1.
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Section 14: Inverse Laplace Transforms

Now we wish to go backwards: Given F(s) can we find a function f()
such that Z{f(t)} = F(s)?

If so, we’ll use the following notation

27 F(s)} = f(t) provided Z{f(t)} = F(s).

We'll call f(t) an inverse Laplace transform of F(s).
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A Table of Inverse Laplace Transforms

- 27 {1} =

» 27 { It =t"forn=1,2,...

. 1{3 a}:eat
> g*%ﬁ}:coski‘
> ¥ 1{

32+k2} = sin kt

The inverse Laplace transform is also linear so that

2~ {aF(s) + BG(s)} = af(t) + Bg(1)
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Find the Inverse Laplace Transform

When using the table, we have to match the expression inside the
brackets {} EXACTLY! Algebra, including partial fraction

decomposition, is often needed. .\{ al % (:ﬂ
i ntl =

S

MO\L ]F ﬂ'-k’ *’L\n n‘f’\ :1
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;["\{ § Cos(kt)

mlm

Example: Evaluate

. i
(b) 31{:2119} i{s 2% (4]
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Example: Evaluate
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