July 13 Math 2306 sec 52 Summer 2016

Section 13 \& 14 : The Laplace Transform \& Inverse Laplace Transforms

Recall that if f is piecewise continuous on $[0, \infty)$ and of exponential order c for some $c>0$, then the Laplace transform of f is defined by

$$
F(s)=\mathscr{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

Moreover, if $F(s)=\mathscr{L}\{f(t)\}$, then we say that $f(t)$ is an inverse Laplce transform of $F(s)$ and write

$$
f(t)=\mathscr{L}^{-1}\{F(s)\} .
$$

Basic Table of Laplace Transforms

Some basic results include:

- $\mathscr{L}\{\alpha f(t)+\beta \boldsymbol{g}(t)\}=\alpha F(s)+\beta G(s)$
- $\mathscr{L}\{1\}=\frac{1}{s}, \quad s>0$
- $\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}, \quad s>0$ for $n=1,2, \ldots$
- $\mathscr{L}\left\{e^{a t}\right\}=\frac{1}{s-a}, \quad s>a$
- $\mathscr{L}\{\cos k t\}=\frac{s}{s^{2}+k^{2}}, \quad s>0$
- $\mathscr{L}\{\sin k t\}=\frac{k}{s^{2}+k^{2}}, \quad s>0$

Evaluate the Transform or Inverse Transform
(a)

$$
\begin{aligned}
\mathscr{L}\left\{2 t^{3}-\sin (5 t)\right\} & =2 \mathscr{L}\left\{t^{3}\right\}-\mathcal{L}\{\sin (s t)\} \\
& =2 \frac{3!}{s^{4}}-\frac{5}{s^{2}+5^{2}} \\
& =\frac{12}{s^{4}}-\frac{5}{s^{2}+25}
\end{aligned}
$$

Examples: Evaluate
(b) $\mathscr{L}^{-1}\left\{\frac{4 s}{s^{2}+8}\right\}=4 \mathscr{L}^{-1}\left\{\frac{s}{s^{2}+8}\right\}$

$$
=4 \cos (\sqrt{8} t)
$$

Examples: Evaluate
(c)

$$
\begin{aligned}
\mathscr{L}\left\{\left(e^{2 t}-1\right)^{2}\right\} & =\mathscr{L}\left\{e^{4 t}-2 e^{2 t}+1\right\} \\
& =\mathscr{L}\left\{e^{4 t}\right\}-2 \mathcal{L}\left\{e^{2 t}\right\}+\mathcal{L}\{1\} \\
& =\frac{1}{s-4}-2 \frac{1}{s-2}+\frac{1}{s} \\
& =\frac{1}{s-4}-\frac{2}{s-2}+\frac{1}{8}
\end{aligned}
$$

Examples: Evaluate
(d) $\mathscr{L}^{-1}\left\{\frac{2}{s^{2}+3 s}\right\}$

Panted fractions

$$
\begin{aligned}
\frac{2}{s(s+3)} & =\frac{A}{s}+\frac{B}{s+3} \quad \text { ult. by } s(s+3) \\
z & =A(s+3)+B s
\end{aligned}
$$

set $S=0 \quad 2=A(3)+B \cdot 0 \Rightarrow A=\frac{2}{3}$

$$
S=-3 \quad 2=A(0)+B(-3) \Rightarrow B=\frac{-2}{3}
$$

$$
\begin{aligned}
\mathcal{L}^{-1}\left\{\frac{2}{s^{2}+3 s}\right\} & =\mathcal{L}^{-1}\left\{\frac{2 / 3}{s}-\frac{2 / 3}{s+3}\right\} \\
& =\frac{2}{3} \mathcal{L}^{-1}\left\{\frac{1}{s}\right\}-\frac{2}{3} \mathcal{L}^{-1}\left\{\frac{1}{s+3}\right\} \\
& =\frac{2}{3}-\frac{2}{3} e^{-3 t}
\end{aligned}
$$

Section 15: Shift Theorems
Suppose we wish to evaluate $\mathscr{L}^{-1}\left\{\frac{2}{(s-1)^{3}}\right\}$. Does it help to know that $\mathscr{L}\left\{t^{2}\right\}=\frac{2}{s^{3}}$?

Note that by definition

$$
\begin{array}{rlr}
\mathscr{L}\left\{e^{t} t^{2}\right\}=\int_{0}^{\infty} e^{-s t} e^{t} t^{2} d t & =\int_{0}^{\infty} e^{-(s-1) t} t^{2} d t & e^{-s t} \cdot e^{t}= \\
& =\int_{0}^{\infty} e^{-w t} t^{2} d t & e^{-s t+t}= \\
& & \\
L_{e}\left\{t^{2}\right\}=s-1 & & e^{(-s+1) t}= \\
& & e^{-(s-1) t}
\end{array}
$$

So $\mathcal{L}\left\{e^{t} t^{2}\right\}=\frac{2}{w^{3}}$ where $w=s-1$
ire. $y\left\{e^{t} t^{2}\right\}=\frac{2}{(s-1)^{3}}$

If $F(s)=\mathcal{L}\left\{t^{2}\right\}$ then

$$
F(s-1)=\mathcal{L}\left\{e^{t} t^{2}\right\}
$$

Theorem (translation in s)

Suppose $\mathscr{L}\{f(t)\}=F(s)$. Then for any real number a

$$
\mathscr{L}\left\{e^{a t} f(t)\right\}=F(s-a)
$$

For example,

$$
\begin{gathered}
\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}} \Longrightarrow \mathscr{L}\left\{e^{a t} t^{n}\right\}=\frac{n!}{(s-a)^{n+1}} . \\
\mathscr{L}\{\cos (k t)\}=\frac{s}{s^{2}+k^{2}} \Longrightarrow \mathscr{L}\left\{e^{a t} \cos (k t)\right\}=\frac{s-a}{(s-a)^{2}+k^{2}} .
\end{gathered}
$$

We'll use this primarily with irreducible quadratic factors or repeated linear factors in the denominator.

Inverse Laplace Transforms (completing the square)
(a) $\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+2 s+2}\right\}$
$s^{2}+2 s+2$ doesn't factor
Its discriminant is

$$
2^{2}-4 \cdot 1 \cdot 2=4-8<0
$$

well complete the square

$$
s^{2}+2 s+2=s^{2}+2 s+1+2-1=(s+1)^{2}+1
$$

So

$$
\frac{s}{s^{2}+2 s+1}=\frac{s}{(s+1)^{2}+1}=\frac{s+1-1}{(s+1)^{2}+1}=\frac{s+1}{(s+1)^{2}+1}-\frac{1}{(s+1)^{2}+1}
$$

$$
\begin{aligned}
\mathcal{L}^{-1}\left\{\frac{s}{s^{2}+2 s+1}\right\}= & \mathcal{L}^{-1}\left\{\frac{s+1}{(s+1)^{2}+1}-\frac{1}{(s+1)^{2}+1}\right\} \\
= & \mathcal{L}^{-1}\left\{\frac{s+1}{(s+1)^{2}+1}\right\}-\mathcal{L}^{-1}\left\{\frac{1}{(s+1)^{2}+1}\right\} \\
& \text { form } \frac{s}{s^{2}+1} \\
= & e^{-t} \cos t-e^{-t} \sin t
\end{aligned}
$$

Inverse Laplace Transforms (repeat linear factors)
(b) $\mathscr{L}^{-1}\left\{\frac{1+3 s-s^{2}}{s(s-1)^{2}}\right\}$

Particle fraction

$$
\frac{1+3 s-s^{2}}{s(s-1)^{2}}=\frac{A}{s}+\frac{B}{s-1}+\frac{C}{(s-1)^{2}}
$$

Clear fractions

$$
\begin{aligned}
1+3 s-s^{2} & =A(s-1)^{2}+B s(s-1)+C s \\
& =A\left(s^{2}-2 s+1\right)+B\left(s^{2}-s\right)+C s \\
1+3 s-s^{2} & =(A+B) s^{2}+(-2 A-B+C)+A
\end{aligned}
$$

$$
\begin{aligned}
& A+B=-1, \quad-2 A-B+C=3, \quad A=1 \\
& B=-1-A=-2 \\
& C=3+B+2 A=3-2+2=3
\end{aligned}
$$

So

$$
\begin{aligned}
\mathscr{L}^{-1}\left\{\frac{1+3 s-s^{2}}{s(s-1)^{2}}\right\} & =\mathcal{L}^{-1}\left\{\frac{1}{s}-\frac{2}{s-1}+\frac{3}{(s-1)^{2}}\right\} \\
& =\mathcal{L}^{-1}\left\{\frac{1}{s}\right\}-2 \mathcal{L}^{-1}\left\{\frac{1}{s-1}\right\}+3 \mathcal{L}^{-1}\left\{\frac{1}{(s-1)^{2}}\right\} \\
& \text { form is } \frac{1}{s^{2}}
\end{aligned}
$$

$$
=1-2 e^{t}+3 t e^{t}
$$

The Unit Step Function

Let $a \geq 0$. The unit step function $\mathscr{U}(t-a)$ is defined by

$$
\mathscr{U}(t-a)= \begin{cases}0, & 0 \leq t<a \\ 1, & t \geq a\end{cases}
$$

Figure: We can use the unit step function to provide convenient expressions for piecewise defined functions.

Piecewise Defined Functions
Verify that

$$
f(t)=\left\{\begin{array}{ll}
g(t), & 0 \leq t<a \\
h(t), & t \geq a
\end{array}=g(t)-g(t) \mathscr{U}(t-a)+h(t) \mathscr{U}(t-a)\right.
$$

Conside $0 \leq t<a$, then $U(t-a)=0$

$$
f(t)=g(t)-g(t) \cdot 0+h(t) \cdot 0=g(t) \text { as required }
$$

Consider $t \geqslant a$, then $u(t-a)=1$

$$
f(t)=g(t)-g(t) \cdot 1+h(t) \cdot 1=h(t) \quad \text { again as } \text { required. }
$$

So it is true that

$$
\left\{\begin{array}{l}
g(t), 0 \leq t<a \\
h(t), t \geqslant a
\end{array}=g(t)-g(t) u(t-a)+h(t) u(t-a)\right.
$$

Piecewise Defined Functions in Terms of \mathscr{U}
Write f on one line in terms of \mathscr{U} as needed

$$
f(t)= \begin{cases}e^{t}, & 0 \leq t<2 \\ t^{2}, & 2 \leq t<5 \\ 2 t & t \geq 5\end{cases}
$$

$$
\begin{aligned}
& f(t)=e^{t}-e^{t} u(t-2)+t^{2} u(t-2)-t^{2} u(t-5)+2 t u(t-5)
\end{aligned}
$$

Let's verify

For $0 \leq t<2 \quad u(t-2)=0$ and $u(t-5)=0$

$$
f(t)=e^{t} \cdot e^{t} \cdot 0+t^{2} \cdot 0-t^{2} \cdot 0+2 t \cdot 0=e^{t}
$$

For $\quad z \leqslant t<5, \quad u(t-z)=1 \quad u(t-5)=0$

$$
f(t)=e^{t}-e^{t} \cdot 1+t^{2} \cdot 1-t^{2} \cdot 0+2 t \cdot 0=t^{2}
$$

For $\quad t \geqslant 5, u(t-2)=1 \quad u(t-5)=1$

$$
f(t)=e^{t}-e^{t} \cdot 1+t^{2} \cdot 1-t^{2} \cdot 1+2 t \cdot 1=2 t
$$

Translation in t

Given a function $f(t)$ for $t \geq 0$, and a number $a>0$

$$
f(t-a) \mathscr{U}(t-a)= \begin{cases}0, & 0 \leq t<a \\ f(t-a), & t \geq a\end{cases}
$$

Figure: The function $f(t-a) \mathscr{U}(t-a)$ has the graph of f shifted a units to the right with value of zero for t to the left of a.

Theorem (translation in t)

If $F(s)=\mathscr{L}\{f(t)\}$ and $a>0$, then

$$
\mathscr{L}\{f(t-a) \mathscr{U}(t-a)\}=e^{-a s} F(s) .
$$

In particular,

$$
\mathscr{L}\{\mathscr{U}(t-a)\}=\frac{e^{-a s}}{s} .
$$

As another example,

$$
\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}} \quad \Longrightarrow \quad \mathscr{L}\left\{(t-a)^{n} \mathscr{U}(t-a)\right\}=\frac{n!e^{-a s}}{s^{n+1}} .
$$

Show that $\mathscr{L}\{\mathscr{U}(t-a)\}=\frac{e^{-a s}}{s}$
By definition

$$
\begin{aligned}
\mathscr{L}\{u(t-a)\} & =\int_{0}^{\infty} e^{-s t} u(t-a) d t \\
= & \int_{0}^{a} e^{-s t} \cdot 0 d t+\int_{a}^{\infty} e^{-s t} \cdot 1 d t \\
= & \int_{a}^{\infty} e^{-s t} d t \\
\text { for } s>0 & =\left.\frac{e^{-s t}}{-s}\right|_{a} ^{\infty}=\frac{-1}{s}\left(0-e^{-s \cdot a}\right)
\end{aligned}
$$

$$
=\frac{e^{-a s}}{s}
$$

Example
Find the Laplace transform $\mathscr{L}\{h(t)\}$ where

$$
h(t)= \begin{cases}1, & 0 \leq t<1 \\ t, & t \geq 1\end{cases}
$$

(a) First write h in terms of unit step functions.

$$
\begin{aligned}
h(t) & =1-1 u(t-1)+t u(t-1) \\
& =1+(t-1) u(t-1)
\end{aligned}
$$

Example Continued...
(b) Now use the fact that $h(t)=1+(t-1) \mathscr{U}(t-1)$ to find $\mathscr{L}\{h\}$.

$$
\begin{array}{rlrl}
\mathscr{L}\{h(t)\} & =\mathcal{L}\{1+(t-1) u(t-1)\} & & \\
& =\mathscr{L}\{1\}+\mathscr{L}\{(t-1) u(t-1)\} & & \text { If } f(t)=t \\
f(t-a) u(t-a) & & \text { then } \\
& =\frac{1}{s}+\frac{1}{s^{2}} e^{-1 s} & & \mathcal{L}\{t\}=t-1)=\frac{1}{s^{2}} \\
& =\frac{1}{s}+\frac{e^{-s}}{s^{2}} & &
\end{array}
$$

A Couple of Useful Results
Another formulation of this translation theorem is
(1) $\mathscr{L}\{g(t) \mathscr{U}(t-a)\}=e^{-a s} \mathscr{L}\{g(t+a)\}$.

Example: Find $\mathscr{L}\left\{\cos t \mathscr{U}\left(t-\frac{\pi}{2}\right)\right\}=e^{-\frac{\pi}{2} s} \mathcal{L}\left\{\cos \left(t+\frac{\pi}{2}\right)\right\}$

$$
\begin{aligned}
&=e^{-\frac{\pi}{2} s} \mathcal{L}\{-\sin t\} \\
&=-e^{-\frac{\pi}{2} s} \mathcal{L}\{\sin t\}=\frac{-e^{-\pi / 2 s}}{s^{2}+1} \\
& \cos (t+\pi / 2)=\cos t \cos \pi / 2-\sin t \sin \pi / 2=-\sin t
\end{aligned}
$$

A Couple of Useful Results
The inverse form of this translation theorem is
(2) $\mathscr{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) \mathscr{U}(t-a)$.

Example: Find $\mathscr{L}^{-1}\left\{\frac{e^{-2 s}}{s(s+1)}\right\}$ we reed $\mathscr{L}^{-1}\left\{\frac{1}{s(s+1)}\right\}$
Pauticl fraction $\frac{1}{s(s+1)}=\frac{A}{s}+\frac{B}{s+1}$

$$
1=A(s+1)+B s
$$

Set $S=0 \quad 1=A$
$S=-1 \quad 1=-B$

So

$$
\begin{aligned}
& \mathcal{L}^{-1}\left\{\frac{1}{s(s+1)}\right\}=\mathcal{L}^{-1}\left\{\frac{1}{s}-\frac{1}{s+1}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{s}\right\}-\mathcal{L}^{-1}\left\{\frac{1}{s+1}\right\} \\
&=\underbrace{1-e^{-t}}_{\text {this is our } f(t)} \\
& \text { so } \mathscr{L}^{-1}\left\{\frac{e^{-2 s}}{s(s+1)}\right\}=\left(1-e^{-(t-2)}\right) u(t-2) \\
& f(t-2) u(t-2)
\end{aligned}
$$

