## July 14 Math 2254 sec 001 Summer 2015

## Section 8.7: Summary of Tests for Series

* Does it have a specific type? (p-series, geometric, telescoping, alternating)
* If you can readily see that $\lim _{n \rightarrow \infty} a_{n} \neq 0$, use the Divergence test.
* If $a_{n}>0$ and the function $f(n)=a_{n}$ looks like you can integrate it (i.e. $\int_{1}^{\infty} f(x) d x$ is manageable), try the integral test.
* If it involves a rational function in $n$ or a ratio of roots and powers of $n$, a direct or limit comparison test (comparing to a $p$-series) might be useful.
* If it looks very similar to a geometric series, but is not quite a geometric series, a direct or limit comparison test to a geometric may be useful.
* If it involves factorials or complicated products, the ratio test might lead to the necessary conclusion. If it involves expressions to the $n^{\text {th }}$ power, the root test may work.
$\diamond$ Remember that the ratio \& root tests (when conclusive) determine absolute convergence. When using the alternating series test, if a series is found to be convergent remember to check for absolute convergence.
(c) $\sum_{n=2}^{\infty} \frac{3 n+2}{n-\sqrt{2}} \quad$ Divergence test

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{3 n+2}{n-\sqrt{2}}=\lim _{n \rightarrow \infty}\left(\frac{3 n+2}{n-\sqrt{2}}\right) \cdot \frac{\frac{1}{n}}{\frac{1}{n}} \\
& =\lim _{n \rightarrow \infty} \frac{3+\frac{2}{n}}{1-\frac{\sqrt{2}}{n}}=\frac{3+0}{1-0}=3 \neq 0
\end{aligned}
$$

The series diverge by the divagince test.
(d) $\sum_{n=1}^{\infty}(-1)^{n} \frac{3 n}{2 n^{2}+3}$ Alt. series test: $a_{n}=\frac{3 n}{2 n^{2}+3}$
i)

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n} & =\lim _{n \rightarrow \infty} \frac{3 n}{2 n^{2}+3} \cdot \frac{\frac{1}{n^{2}}}{\frac{1}{n^{2}}} \\
& =\lim _{n \rightarrow \infty} \frac{\frac{3}{n}}{2+\frac{3}{n^{2}}}=\frac{0}{2+0}=0
\end{aligned}
$$

ii) Is $a_{n+1} \leq a_{n}$ ? Let $f(x)=\frac{3 x}{2 x^{2}+3}$

$$
f^{\prime}(x)=\frac{3\left(2 x^{2}+3\right)-3 x(4 x)}{\left(2 x^{2}+3\right)^{2}}=\frac{6 x^{2}+9-12 x^{2}}{\left(2 x^{2}+3\right)^{2}}=\frac{9-6 x^{2}}{\left(2 x^{2}+3\right)^{2}}
$$

If $9-6 x^{2}<0 \Rightarrow \frac{9}{6}<x^{2} \Rightarrow \sqrt{\frac{3}{2}}<x$ So $f^{\prime}(x)<0$ for $x \geqslant 2$

$$
a_{n+1}=f(n+1)<f(n)=a_{n} \text { for } n \geqslant 2 \text {. }
$$

Both conditions of the alt. Seines test are true, So the series is convergent.

To determine the type of convergence, consider

$$
\sum_{n=1}^{\infty}\left|(-1)^{n} \frac{3 n}{2 n^{2}+3}\right|=\sum_{n=1}^{\infty} \frac{3 n}{2 n^{2}+3}
$$

As $n \rightarrow \infty \quad \frac{3 n}{2 n^{2}+3} \sim \frac{3 n}{2 n^{2}}=\frac{3}{2} \frac{1}{n}$
Use limit comparison with the divergent series $\sum_{n=1}^{\infty} \frac{1}{n}$. Let $a_{n}=\frac{3 n}{2 n^{2}+3}$ and

$$
\begin{aligned}
& b_{n}=\frac{1}{n} \cdot \\
& \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{3 n}{2 n^{2}+3} \frac{1}{n}=\lim _{n \rightarrow \infty} \frac{3 n^{2}}{2 n^{2}+3} \cdot \frac{\frac{1}{n^{2}}}{\frac{1}{n^{2}}} \\
& \quad=\lim _{n \rightarrow \infty} \frac{3}{2+\frac{3}{n^{2}}}=\frac{3}{2+0}=\frac{3}{2}
\end{aligned}
$$

$0<\frac{3}{2}<\infty$. Since $\sum_{n=1}^{\infty} \frac{1}{n}$ diverge, the Series $\sum_{n=1}^{\infty} \frac{3 n}{2 n^{2}+3}$ also diverges.

The series $\sum_{n=1}^{\infty}(-1)^{n} \frac{3 n}{2 n^{2}+3}$ is
conditionally convergent.

Section 8.8: Power Series
Motivating Example: Let $x$ be a variable (representing a real number). Show that the series

$$
\sum_{n=1}^{\infty} \frac{(x-4)^{n}}{2 n^{2}}
$$

converges if $x=3$ and diverges if $x=7$.
Let $x=3$, the series becomes $\sum_{n=1}^{\infty} \frac{(3-4)^{n}}{2 n^{2}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2 n^{2}}$
Note $\sum_{n=1}^{\infty}\left|\frac{(-1)^{n}}{2 n^{2}}\right|=\sum_{n=1}^{\infty} \frac{1}{2 n^{2}}=\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n^{2}}$ a convergent $p$-series.
Hence $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2 n^{2}}$ is absolutely convergent,

Setting $x=7$, the series is $\sum_{n=1}^{\infty} \frac{(7-4)^{n}}{2 n^{2}}=\sum_{n=1}^{\infty} \frac{3^{n}}{2 n^{2}}$
Ratio test wi $a_{n}=\frac{3^{n}}{2 n^{2}}$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{3^{n+1}}{2(n+1)^{2}} \cdot \frac{2_{n}^{2}}{3^{n}}\right| \\
&=\lim _{n \rightarrow \infty} \frac{3 n^{2}}{(n+1)^{2}}=\lim _{n \rightarrow \infty} 3\left(\frac{n}{n+1}\right)^{2} \\
&=\lim _{n \rightarrow \infty} 3\left(\frac{n}{n+1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}}\right)^{2}
\end{aligned}
$$

$$
=\lim _{n \rightarrow \infty} 3\left(\frac{1}{1+\frac{1}{n}}\right)^{2}=3(1)^{2}=3
$$

$L=3>1$ so the sees diver ge when

$$
x=7
$$

## Power Series

Definition: A power series is a series of the form

$$
\sum_{n=0}^{\infty} a_{n}(x-c)^{n}=a_{0}+a_{1}(x-c)+a_{2}(x-c)^{2}+a_{3}(x-c)^{3}+\cdots
$$

where the $a_{n}$ 's are (known) constants called the coefficients, $x$ is a variable, and $c$ is a (known) constant called the center.

For convenience, we set $(x-c)^{0}=1$ even in the case that $x=c$.
Remark: As the previous example suggests, a power series may be convergent for some values of $x$ and divergent for others.

Example
Determine all values) of $x$ for which the series converges.
$\sum_{n=1}^{\infty} \frac{(x-4)^{n}}{2 n^{2}} \quad$ If $x=4$, the series terms are all
Ratio test: $a_{n}=\frac{(x-4)^{n}}{2 n^{2}}$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(x-4)^{x+1}}{z(n+1)^{2}} \cdot \frac{2 n^{2}}{(x-4)^{n}}\right| \\
&=\lim _{n \rightarrow \infty}\left|\frac{(x-4) n^{2}}{(n+1)^{2}}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty}|x-4|\left(\frac{n}{n+1}\right)^{2}=|x-4|(1)^{2} \\
& =|x-4|
\end{aligned}
$$

$L=|x-4|$ The series converges absolutely if $L<1 \Rightarrow|x-4|<1$

$$
\text { ie. } \begin{aligned}
&-1<x-4<1 \\
&+4+4+4 \\
& 3<x<5
\end{aligned}
$$

$L=1$ if $x=3$ or $x=5$
we know it converges if $x=3$.
If $x=S$ the series is $\sum_{n=1}^{\infty} \frac{(5-4)^{n}}{2 n^{2}}=\sum_{n=1}^{\infty} \frac{1}{2 n^{2}}$
which is a convergent p-senies,

The series converglo absolutely if

$$
3 \leq x \leq 5
$$

$$
\text { If } L>1 \text {, is }|x-4|>1
$$

The sevies divenges by the ratio test.

So the seies divenge if $x>5$ or $x<3$.

